簡易檢索 / 詳目顯示

研究生: 陳蓁慧
Chen, Chen-Hui
論文名稱: 石墨稀經由碳擴散鎳薄膜之成長及分析
Growth and Characterization of Graphene by Carbon Diffusion through Nickel Thin Film
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 144
中文關鍵詞: 石墨烯拉曼光譜儀
外文關鍵詞: Graphene, Nickel, Carbon, Raman spectroscopy
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用物理方式成長大面積的石墨烯,不同於以往的文獻研究,大多利用化學氣相沉積法。首先將石墨均勻濺鍍在二氧化矽基板上,隨即濺鍍鎳金屬在石墨上,沉積厚度由可控制濺鍍速率在0.1埃/秒之膜厚機得知,形成了三明治夾層結構。隨著退火過程,碳原子在高溫下擴散到鎳金屬內,並在降溫的時候析出表面形成石墨烯。
    石墨烯經過蝕刻轉移至SiO2基板上,經由拉曼光譜儀判斷石墨烯的性質,並利用Probe Station探針測量薄膜電性、掃描式電子顯微鏡(SEM)觀察試片表面狀況及其掃描穿透式電子偵測器(STEM)同時觀察石墨烯薄膜穿透及表面狀況、穿透式電子顯微鏡(TEM)觀察繞射圖案 (Diffraction Pattern; DP)等等。
    我們已經成功利用很簡單的製程製造出石墨烯,得知Ni (300 nm)/C (3 nm)/SiO2經過退火溫度950℃下持溫時間為15分鐘獲得的石墨烯(GJ)為最佳參數及2D/G及D/G的比值分別為1.04和0.052,而且我們的製程下降退火溫度到800℃短時間持溫1分鐘亦可以析出出石墨烯。

    In this research, large-area graphene is grown by solid state reactions, distinctly different from conventional chemical vapor deposition. In the first step, carbon is sputtered uniformly on a nickel thin film, with precise thickness control at the sputtering rate of 0.1 angstrom/sec. Subsequently, carbon is dissolved into nickel under high temperature annealing and graphene is formed on surface through precipitation during cooling, where the number of atomic layers of graphene can be controlled by annealing temperature between 800℃ and 950℃. The number of graphene layers is confirmed by Raman spectroscopy; electrical properties by Probe Station; and microstructure by Scanning electron microscopy and transmission electron microscopy. The sheet resistance is measured by transferring graphene onto a SiO2 substrate patterned with electrodes. The relationship between experimental parameters and the number of graphene layers is discussed, including the thickness and microstructure of the carbon and nickel films, annealing temperature, etc. The domain size is calculated by Raman characteristic peaks, as well as directly measured by transmission electron microscopy. Finally, we have succeeded in producing high quality graphene by using a facile process, and learned that the Ni (300 nm) / C (3 nm) / SiO2 annealed at 950℃ for 15 minutes as the best parameters for the resulting 2D / G and D / G intensity ratios of 1.04 and 0.052, respectively. Besides, we also demonstrate graphene can be formed at the lowest temperature of 800℃ for short-term holding of one minute.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIX 第一章 序論 1 1.1石墨烯(Graphene)發現的歷史 1 1.2石墨烯的介紹 1 1.3研究動機 6 第二章 文獻回顧 8 2.1石墨晶體結構 8 2.1.1單層石墨 8 2.1.2雙層與多層石墨 10 2.2石墨烯製備方式 12 2.2.1機械剝離法(撕膠帶法或輕微摩擦法) 12 2.2.2碳化矽表面磊晶成長 14 2.2.3金屬表面成長 16 2.2.4氧化減薄石墨片法 18 2.2.5肼還原法(Hydrazine reduction) 20 2.2.6乙氧鈉裂解法 20 2.2.7切割奈米碳管法 20 2.2.8 化學氣相沉積法(Chemical vapor deposition) 21 2.3石墨烯的轉移方法[17] 21 2.4 拉曼光譜檢測石墨烯 33 2.4.1 G peak 34 2.4.2 D和D’ peak 35 2.4.3 2D peak 37 2.4.4聲子的共振頻率 41 2.4.5入射光能量與峰值之關係 42 2.4.6 AB stacking雙層石墨 42 2.4.7G peak 與層數之關係 44 2.4.8 2D peak與層數之關係 46 2.5成長機制 47 第三章 實驗設備與步驟 50 3.1實驗設備 50 3.1.1精密離子蝕刻鍍膜系統(PECS, Precision Etching Coating System) 50 3.1.2真空退火爐系統 50 3.1.3 微拉曼及微光激發光譜儀(Micro-Raman & Micro-PL) 51 3.1.4 高解析掃描電子顯微鏡(High Resolution Scanning Electron Microscope, SEM-SU8000) 53 3.1.5 Probe station 53 3.2實驗步驟 56 3.2.1試片製備 56 3.2.2退火處理 58 3.2. 3石墨烯轉移 59 3.2.4量測電性前準備 61 第四章 結果與討論 62 4.1各種參數之比較 62 4.1.1不同退火溫度參數之比較 62 4.1.2不同持溫時間參數之比較 77 4.1.3不同鎳厚度參數之比較 85 4.1.4 不同碳厚度參數之比較 99 4.1.5沉積的鎳比碳厚度為100比1之參數 108 4.2Raman分析結果 117 4.2.1 Raman雷射曝射不同時間 117 4.2.2 Raman對石墨烯在不同基板上之比較 120 4.3ESCA分析結果 122 4.4 SEM分析結果 123 4.5 SEM之TE(穿透模式)與SE(掃描模式)分析結果 128 4.6 TEM分析結果 128 4.7 閘極電壓電性分析 132 第五章 結論 135 參考文獻 136

    [1] V. Kohlschütter and P. Haenni. Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Z. Anorg. Allg. Chem.. 1918, 105 (1): 121–144.
    [2] G. Ruess and F. Vogt. Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte für Chemie. 1948, 78 (3-4): 222–242.
    [3] Nobel Foundation announcement
    [4] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp.183-191, 2007.
    [5] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nat Nano, vol. 3, pp. 206-209, 2008.
    [6] T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, "Extraordinary Mobility in Semiconducting Carbon Nanotubes," Nano Letters, vol. 4, pp. 35-39, 2004.
    [7] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 18, 2008.
    [8] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, "Mechanical properties of suspended graphene sheets," 2007, pp. 2558-2561. 2008.
    [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, October 22 2004.
    [10] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Letters, vol. 0, 2009.
    [11] X. Wu, Y. Pei, and X. C. Zeng, "B2C Graphene, Nanotubes, and Nanoribbons," Nano Letters, vol. 9, pp. 1577-1582, 2009.
    [12] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P.Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of grapheme films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
    [13] X. Wang, L. Zhi, and K. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., vol. 8, pp. 323-327,
    [14] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, "Molecular Doping of Graphene," Nano Lett., vol. 8, pp. 173-177, 2008.
    [15] 吳至彧(2009),「利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究」,國立清華大學工程與系統科學系碩士論文。
    [16] http://www.nistep.go.jp/achiev/ftx/eng/stfc/stt037e/qr37pdf/STTqr3705.pdf
    [17] 曾偉良 (2011),「奈米碳片,鑽石,石墨烯與其複合薄膜在電化學與場發射上的應用」,國立成功大學微電子工程研究所碩士論文。
    [18] HRW(二元合金相圖)軟體。
    [19] J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer grapheme”, J. Phys.: Condens. Matter vol. 20, p. 323202. 2008.
    [20] D. D. L. Chung, “Review graphite”, journal of Material Science, vol. 37, p. 1475, 2002.
    [21] S. Latil and L. Henrard. “Charge Carriers in Few-Layer Graphene Films”, Phys. Rev. Lett., vol. 97, p. 036803. 2006.
    [22] Singh V et al (2011). Prog Mater Sci,doi:10.1016/j.pmatsci.2011.03.003.
    [23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.Dubonos, I. V. Grigorieva, and A. A. Firsov(2004), Science 306, 666.
    [24] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, pp. 073104-3, 2005.
    [25] Berger, Claire; Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer, Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B. 2004, 108 (52): 19912-6, doi:10.1021/jp040650f
    [26] http://zh.wikipedia.org/zh-tw/%E7%9F%B3%E5%A2%A8%E7%83%AF
    [27] Sutter, P.. Epitaxial graphene: How silicon leaves the scene. Nature Materials. 2009, 8 (3): 171. doi:10.1038/nmat2392 (inactive 2010-01-09). PMID 19229263.
    [28] J. T. Grant and T. W. Haas, "A study of Ru(0001) and Rh(111) surfaces using LEED and Auger electron spectroscopy," Surface Science, vol. 21, pp. 76-85, 1970.
    [29] P. Yi, S. Dong-Xia, and G. Hong-Jun, "Formation of graphene on Ru(0001) surface," Chinese Physics, vol. 16, pp. 3151-3153, 2007.
    [30] H. Z. Yi Pan, Dongxia Shi, Jiatao Sun, Shixuan Du, Feng Liu, Hong-jun Gao,, "Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001)," Advanced Materials, vol. 9999, p. NA, 2008.
    [31] S. Marchini, S. Gunther, and J. Wintterlin, "Scanning tunneling microscopy of graphene on Ru(0001)," Physical Review B (Condensed Matter and Materials Physics), vol. 76, pp. 075429-9, 2007.
    [32] T. H. D. Fujita, "Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation," Surface and Interface Analysis, vol. 19, pp. 430-434, 1992.
    [33] D. Fujita and K. Yoshihara, "Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel(111) surface," in The 40th National Symposium of the American Vacuum Society, Orlando, Florida (USA), 1994, pp. 2134-2139.
    [34] J. C. Shelton, H. R. Patil, and J. M. Blakely, "Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition," Surface Science, vol. 43, pp. 493-520, 1974.
    [35] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial D. A. Abanin and L. S. Levitov, Science 317, 641 (2007).
    [36] Wang, H.M. et al. Electronic transport and layer engineering in multilayer grapheme structures. Applied Physics Letters. 2008, 92: 053504. doi:10.1063/1.2840713.
    [37] C. Xu, X. Wu, J. Zhu, and X. Wang, "Synthesis of amphiphilic graphite oxide," Carbon, vol. 46, pp. 386-389, 2008.
    [38] Y. Si and E. T. Samulski, "Synthesis of Water Soluble Graphene," Nano Lett.,vol. 8, pp. 1679-1682, 2008.
    [39] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat Nano, vol. 3, pp. 270-274, 2008.
    [40] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nat Nano, vol. 4, pp. 25-29, 2009.
    [41] Researchers discover method for mass production of nanomaterial graphene. PhysOrg.com. November 2008.
    [42] Choucair, M.; Thordarson, P; Stride, JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology. 2008, 4 (1): 30–3. doi:10.1038/nnano.2008.365. PMID 19119279.
    [43] Brumfiel, G.. Nanotubes cut to ribbons New techniques open up carbon tubes to create ribbons. Nature. 2009. doi:10.1038/news.2009.367.
    [44] Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature. 2009, 458 (7240): 877. doi:10.1038/nature07919. PMID 19370031.
    [45] Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC. (2004),Carbon;42:2867.
    [46] Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC.(2004), Appl Phys Lett;85:1265.
    [47] A. L. L. B. W. M. Hess, Proc. 6th Int. Congr. on Electron Microscopy (Kyoto),vol. 1, p. 569, 1966.
    [48] A. E. Karu and M. Beer, "Pyrolytic Formation of Highly Crystalline Graphite Films," Journal of Applied Physics, vol. 37, pp. 2179-2181, 1966.
    [49] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, "Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol," Chemical Physics Letters, vol. 360, pp. 229-234, 2002.
    [50] F. G. Seung Jin Chae, scedil, and K. K. K. , Eun Sung Kim, Gang Hee Han, Soo Min Kim, Hyeon-Jin Shin, Seon-Mi Yoon, Jae-Young Choi, Min Ho Park, Cheol Woong Yang, Didier Pribat, Young Hee Lee,, "Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation," Advanced Materials, vol. 9999, p. NA, 2009.
    [51] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, "Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition," Nanotechnology, vol. 19, p. 305604, 2008.
    [52] J. J. Lander, H. E. Kern, and A. L. Beach, "Solubility and Diffusion Coefficient of Carbon in Nickel: Reaction Rates of Nickel-Carbon Alloys with Barium Oxide," Journal of Applied Physics, vol. 23, pp. 1305-1309, 1952.
    [53] Y.-A. Mo, "The effect of catalysts (iron, cobalt, and nickel) on the mechanism and kinetics of carbon nanotube growth by thermal CVD method," MS thesis, National Tsing Hua University, 2005.
    [54] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic solar cells with solution-processed graphene transparent electrodes," Applied Physics Letters, vol. 92, pp. 263302-3, 2008.
    [55] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, pp. 113103-3, 2008.
    [56] A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, "Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates," The Journal of Physical Chemistry C, vol. 112, pp. 17741-17744, 2008.
    [57] Ji Won Suk, Alexander Kitt, Carl W. Magnuson, Yufeng Hao, Samir Ahmed, Jinho An, Anna K. Swan, Bennett B. Goldberg, and Rodney S. Ruoff, "Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates," ACS Nano, vol. 5, pp. 6916–6924, 2011.
    [58] 呂俊碩(2009),「以化學氣相沉積法控制單層與雙層石墨於圖紋化矽基板之成長」,國立清華大學電子工程研究所碩士論文。
    [59] M. S. Dresseihaus, G. Dresselhaus, R. Saito and A. Jorio, “Raman spectroscopy of carbon nanotube”, Phys. Rep., vol. 409, P. 47-99. 2005.
    [60] S. Reich and C. Thomsen, “Raman spectroscopy of graphite”, Phil. Trans. R. Soc. Lond. A, vol. 362, p. 2271-2288, 2004.
    [61] L. Cancado. K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy”, Appl. Phys. Lett., vol. 88, p. 163106, 2006.
    [62] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects”, Solid State communications, vol. 143, p. 47-57, 2007.
    [63] R. Saito, A. Jorio, A. G. Souza Filho, C. Dresselhaus, M. S. Dresselhaus and M. A. Pimenta, “Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering”, Phys. Rev. Lett., vol. 88, p. 027401, 2002.
    [64] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri. F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett, vol. 97, p. 187401, 2006.
    [65] J. Kurtiet, V. Zolyomi, A. Gruneis, and H. Kuzmany, “Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes”, Phys. Rev. B. vol. 65, p. 165433, 2002.
    [66] C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite”, Phys. Rev. Lett., vol. 85, p. 5214, 2000.
    [67] B. Partoens and F. M. Peeters, “From grapheme to graphite: Electronic structure around the k point” Phys. Rev. B, vol. 74, p. 075404, 2006.
    [68] R. P. Vidano, D. B. Fishbach, L. J. Willis and T. M. Loehr. “Observation of Raman band shifting with excitation wavelength for carbons and graphites”, Solid State communications, vol. 39, p. 341-344, 1981.
    [69] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, J. Robertson, “Kohn Anomalies and Electron-Phonon Interactions in Graphite”, Phys. Rev. Lett., vol. 93, p. 185503, 2004.
    [70] K.-Y. Shin, "Study of preferred diameter single-walled carbon nanotube growth," PhD thesis, National Tsing Hua University, 2007.
    [71] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Applied Physics Letters, vol. 91, p. 063124, 2007.
    [72] C.-H. Weng, "The growth and in- situ post-treatment of carbon nanotubes in ICP-CVD system and the Raman analysis," MS thesis, National Tsing Hua University, 2004.
    [73] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Physical Review Letters, vol. 97, pp. 187401-4, 2006.
    [74] Nan Liu, Lei Fu, Boya Dai, Kai Yan, Xun Liu, Ruiqi Zhao, Yanfeng Zhang, and Zhongfan Liu, "Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals," Nano Lett., 2011, 11 (1), pp 297–303
    [75] Dai, Y. N. Binary Alloy Phase Diagrams; Science Press of China:Beijing, 2009.
    [76] Zheng Yan, Zhiwei Peng, Zhengzong Sun, JunYao, Yu Zhu, Zheng Liu, Pulickel M. Ajayan, and James M. Tour, "Growth of Bilayer Graphene on Insulating Substrates," ACS Nano, 2011, 5 (10), pp 8187–8192
    [77] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Özyilmaz, Jong-Hyun Ahn, Byung Hee Hong & Sumio Iijima,” Roll-to-roll production of 30-inch graphene films for transparent electrodes”Nature Nanotechnology 5, 574–578 (2010)

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE