| 研究生: |
徐宇君 Hsu, Yu-Chun |
|---|---|
| 論文名稱: |
基樁打擊貫入行為數值模擬 Numerical Simulation of Pile Driving |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 離岸風力發電 、基樁可打擊性分析 、基樁承載力 |
| 外文關鍵詞: | offshore wind, pile capacity analysis, pile driveability analysis |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著能源需求的增加我國開始投入資源發展風力發電,離岸風場開發商於西部海域之風場均採用大口徑單樁基礎作為水下基礎型式。設置海域樁基礎時,主要以打擊方式將基樁貫入海床,此時打擊能量藉由樁錘傳遞到樁頂,再由樁頂沿著樁身向下傳遞應力,當應力抵達樁尖後會受到樁底阻抗,同時,貫入過程中由於周圍土壤受到嚴重擾動,擾動後土壤產生基樁軸向承載力機制複雜其值受眾多因素影響,透過推算基樁軸向承載力給定打樁時的樁錘能量,使樁基礎貫入至設計之埋置深度。由於缺乏離岸風機基礎設置經驗,面對複雜之海床土壤地質條件需特別注意樁基礎安裝時可能面臨的溜樁風險,甚至造成儀器故障、工安災害與工期延宕,因此離岸風場樁基礎設計時,需審慎評估土壤中的大口徑單樁基礎打擊貫入可行性及樁身摩擦阻抗;如何對應風場條件、樁錘型式及基樁尺寸,給定安全合理且符合經濟考量的施工流程規劃為工程設計重大課題。
本研究以數值模型模擬基樁受打擊貫入土壤之行為,進行離岸風場大口徑單樁基礎可行性分析。以台電海氣象觀測塔試驗之打樁試驗成果進行數值模擬,利用試驗紀錄之樁錘能量、打樁次數、基樁尺寸及地質條件,分別採用有限元素模型及商用軟體GRLWEAP建構數值模型進行基樁可打擊性分析,藉由設置土壤材料性質及樁土接觸面之作用屬性模擬樁土互制系統,探討基樁貫入土壤過程之作用行為,分析出打擊貫入次數隨深度分布並與現地之打樁結果進行比較,同時分析打樁當下之基樁承載力大小,並參考前人研究之基樁軸向承載力經驗公式,以同樣之基樁與土壤條件計算出理論值再與分析之承載力成果進行比較。經分析成果說明過度簡化土層、土層判定之不準確及土壤力學參數之不確定性會直接影響可打擊性分析之預測,另外,經調整分析參數及土壤模型建立數值模型之打擊性分析,由成果判定ALE法數值模型受限制影響,僅適用於單層均質土壤之基樁貫入模擬。
With the increase in energy demand, Taiwan has begun to develop the industry of offshore wind power. In Taiwan, the pile foundation of offshore wind is mainly driven by hammer impact. During the pile driving process, axial soil displacements cause shaft friction along with the pile and bearing capacity from the bottom pile. However, pile capacity is affected by many factors, it is not simple to accurately predict the value. Also, due to the lack of experience in setting up offshore wind pile foundations and complicated soil geological conditions, may occur hazards in construction. How to correspond to the wind farm conditions, hammer type, and pile size to give a safe and reasonable construction plan that meets economical consideration as the major issues of engineering design. In this study, pile driveability analysis uses the finite element model and stress-wave model to simulate the behavior between soil and pile during pile penetrating. Then, using the pile driving test data of the TPC weather tower to create a numerical model and compare the result with referenced theory. The analytic findings that over-simplification of the soil layer and the uncertainty of the soil parameters will directly affect the prediction of driveability analysis. In addition, the numerical model of the ALE method is only applicable to the simulated single layer of homogeneous soil.
[1]ABAQUS (2018). ABAQUS,version 6.14Dassault Systemes, Johnston, Rhode Island, United States.
[2]API (1993), “Recommended practice for planning, designing and constructing fixed offshore platforms – Working stress design,” 20th Edition, American Petroleum Institute,Washington, DC.
[3]API-RP2A-WSD (2007), “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms: Working Stress Design”, American Petroleum Institute.
[4]API (2011), “Geotechnical and Foundation Design Considerations,” ANSI/API Recommended Practice 2GEO, First Edition, dated April 2011, American Petroleum Institute.
[5]Arshad, M. I. (2014), “Experimental study of the displacements caused by cone penetration in sand,” Ph.D. thesis, Dept. of Civil Engineering, PurdueUniv.
[6] Al-Kafaji IKJ. (2013), “Formulation of a dynamic material point method (MPM) for geomechanical problems,” PhD thesis. Stuttgart University.
[7]Abtin Farshi Homayoun Rooz, Amir Hamidi, (2019),“A numerical model for continuous impact pile driving using ALE adaptive mesh method,” Soil Dynamics and Earthquake Engineering,Volume 118,2019,Pages 134-143,ISSN 0267-726.
[8] Axelsson, G., (1998), “Long-term increase in shaft capacity of non-cohesive soils,” Thesis, Royal Institute of Technology, Division of Soil and Rock Mechanics, Stockholm, 122 p.
[9]Bermingham, P., Ealy, C.D., White,J.K.,(1994) ,“A Comparsion of Statnamic and Static Field Tests at Seven Fhwa Sites,”Proceeding Int.Conf. on Design and Construction of Deep Foundation,Flprida,USA,vol.II,pp.616-630.
[10] Bustamante, M. and Gianeselli, L. (1982), “Pile bearing capacity by means of static penetrometer CPT. ”2nd Eur. Symp. on Penetration Testing, Amsterdam, pp. 493-500.
[11] Bowles, J.E. (1982), "Foundation Analysis and Design," 3th Edition, Mc Graw-Hill, New York.
[12] Campanella, R.G. and Robertson, P.K. (1988), “Current status of the piezocone test,” Penetration Testing 1988, Vol. 1 (Proc. ISOPT-1, Orlando), Balkema, Rotterdam, 93-116.
[13] Clausen, C.J.F., Aas, P.M. and Karslud. K. (2005), “Bearing capacity of driven piles in sand, the NGI approach,”. Proceedings of the 1st International Symposium on Frontiers in Offshore Engineering, Perth, pp. 677–681.
[14] Dover, A.R., and J. Davidson. (2007), “Large diameter steel pipe piles running under selfweight in soft clay: Predicted vs. observed behavior - Richmond San-Rafael bridge seismic retrofit,” in Proceedings of the 11th Triennial International Conference on Ports, pp.1– 10.
[15] Deeks AJ, Randolph MF. (1993), “Analytical modeling of hammer impact for pile driving,” IntJ Numer Anal Methods Geomech 1993;17(5):279–302.
[16] Das,B.M,(1997).“Advanced Soil Mechanics, ”Taylorand Francis, Philadephia, PA.
[17] Das, S.K., Biswal, R.K., Sivakugan, N. et al. (2011), “Classification of slopes and prediction of factor of safety using differential evolution neural networks,” Environ Earth Sci 64, 201–210.
[18] Daryaei, R., Bakroon, M., Aubram, D., Rackwitz, F. (2020) , “Numerical evaluation of the soil behavior during pipe-pile installation using impact and vibratory driving in sand,”Soil Dynamics and Earthquake Engineering,Volume 134,106177,ISSN 0267-7261.
[19] Endo M, Kawasaki T, Shibata T (1969), “Negative skin friction acting on steel pipe pile in clay.” In: Proceedings of the 7th international conference on soil mechanics and foundation engineering,Mexico, pp 85–92.
[20] Fellenius B.H., D.E. Harris & D.G. Anderson (2004), “Static Loading Test on a 45 m Long Pipe Pile in Sandpoint, Idaho”. Canadian Geotechnical Journal, Vol. 41, No. 4, August 2004, pp. 613-628.
[21] GRLWEAP. (2010). GRLWEAP, version 2010.
[22] Goble, G.G. and Rausche, F., (1981), “Wave Equation Analyses of Pile Driving-WEAP Program,” Volumes 1 through 4, FHWA #IP-76-14.1 through #IP-76-14.4.
[23] Goble, G. G., Likins, G., and Rausche, F. (1975), “Bearing Capacity of Piles from Dynamic Measurements,” Department of Civil Engineering, Case Western Reserve University.
[24] Heerema, Edward P. (1978), “Predicting Pile Driveability: Heather as An Illustration of The Friction Fatigue Theory,” Paper presented at the SPE European Petroleum Conference, London, United Kingdom, October.
[25] Henke S, Grabe J. (2006), “Simulation of pile driving by 3-dimensional finite-element analysis,” Proc, 17th European Young Geotechnical Engineers' Conf, Zagreb, Crotia, V. Szavits-Nossan, ed, Croatian Geotechnical Society:215-233.
[26] Jardine, R.J., Lehane, B.M. and Everton, S.J. (1992), “Friction coefficients for piles in sands and silts,” Proc. Int. Conf. on Offshore Site Investigation and Foundation Behaviour, SUT, London,Kluwer (Dordrecht), pp. 661-677.
[27] Jardine, R.J., and Chow, F.C. (1996), “New Design Methods for Offshore piles,” Marine Technology Directorate, London.
[28] Jardine, R. J., Chow, F., Overy, R., and Standing, J. (2005), “ICP design methods for driven piles in sands and clays,”
[29] Jardine, R. J., Standing, J. R. and Chow. F. C. (2006), “Some observations of the effects of time on the capacity of piles driven in sand.” Géotechnique 56 (4): 227–244.
[30] Jardine, R. J., Zhu, B.T., Foray,P., Yang, Z.X. (2013), “ Interpretation of stress measurements made around closed-ended displacement piles in sand.”Géotechnique, Volume 63, Issue 8, 1 Jun 2013 (613–627).
[31] Kong,D. S., Deng,M. X. ,and Xu ,Y. (2019) , “Study on calculation of pile sliding interval of large-diameter steel pile piles on offshore platforms,” Mathematical Problems in Engineering, Vol. 2019, Article ID 3549296, 8 pages.
[32] Karlsrud, K., Clausen, C.J.F., and Aas, P.M. (2005), “Bearing capacity of driven piles in clay, the NGI approach”.Proceedings of International Symposium on Frontiers in Offshore Geotechnics, Perth Sept. 2005, A.A. Balkema Publishers, pp. 775 - 782.
[33] Kolk, H.J. and Van der Velde, E. (1996), “A Reliable Method to Determine Friction Capacity of Driven Piles in Clay,” In 28th Annual Offshore Technology Conference, 6-9 May 1996, Houston, Texas, U.S.A.: Proceedings, Vol. 1, OTC Paper 7993, pp. 337-346.
[34] Kolk, H.J., Shaffei, K.A. and Baajens, A.E. (2005), “Axial load tests on pipe piles in very dense sands at Ras Tanajib”, Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics, Perth, pp. 765–770.
[35] Kulhawy, F. H. and Mayne, PW (1990), “Manual on Estimating Soil Properties forFoundation Design,” Report EL-6800, EPRI, Palo Alto.
[36] Khoubani A, Ahmadi MM. (2014), “Numerical study of ground vibration due to impact pile driving,” Proc Inst Civ Eng - Geotech Eng 2014;167(1):28–39.
[37] Liu, J., H. Gao, and H. Liu. (2012), “Finite element analyses of negative skin friction on a single pile,” Act Geo-technics 7:239–52.
[38] Lehane, B.M. & Gavin, K. (2004), “Determination of bearing capacity of open-ended piles in sand,” J.Geotech. & Geoenv. Engrg. ASCE 130 (6): 656–658.
[39] Lehane, B., Schneider, J., & Xu, X. (2005), “The UWA-05 method for prediction of axial capacity of driven piles in sand,”In M. J. Cassidy, & S. Gourvenec (Eds.), Proceedings of the International Symposium on Frontiers in Offshore Geotechnics (Perth, Australia ed., Vol. n/a, pp. 683-689.
[40] Lehane,B.M.,Yunong,L.,and Ryan,W.(2013).“Shaft Capacity of Displacement Piles in Clay Using the Cone Penetration Test,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 2, pp. 253-266.
[41] Liu G.R, Quek Jerry S.S. (2003), “A non-reflecting boundary for analyzing wave propagation using the finite element method,”Finite Elem Anal Des 2003;39(5–6):403–17.
[42] Lunne, T., and Kleven, A. (1981). “Role of CPT in North Sea foundation engineering,” In Cone penetration testing and experience (pp. 76-107). ASCE.
[43] Meyerhof, G. G. (1976), “Bearing capacity and settlement of pile foundations,” J. Geotech Geoenviron Eng 102(GT3):197–228.
[44] Meyerhof, G. G. (1957) “The ultimate bearing capacity of foundations on slopes.” Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 1, pp. 384-386.
[45] Mario Zampolli, Marten J. J. Nijhof, Christ A. F. de Jong, Michael A. Ainslie, Erwin H. W. Jansen, and Benoit A. J. Quesson. (2013),“Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving, ”The Journal of the Acoustical Society of America 133, 72-81.
[46] Peck, R.B., Hanson, W.E., and Thornburn, T.H. (1953), “Foundation Engineering,” Soil Science, Vol.75, No.4, pp.329.
[47] Park D, Hashash YMA. (2004), “Soil damping formulation in nonlinear time domain site response analysis,” J Earthq Eng 2004;8(2):249–74.
[48] Rezaei M, Hamidi A, Farshi Homayoun Rooz A. (2016), “Investigation of peak particle velocity variations during impact pile driving process,”Civ Eng Infrastruct J 2016;49(1):59–69.
[49] Stevens, R. S., Wiltsie, E. A., and Turton, T. H. (1982). “Evaluating Drivability for Hard Clay, Very Dense Sand, and Rock,” Proceedings of the Offshore Technology Conference, Offshore Technology Conference, OTC, pp. 18.
[50] Seed, H. B., and Reese, L. C. (1957), “The action of soft clay along friction piles,” T. Am. Soc. Civ. Eng. 122, 731–754. doi:10.1061/taceat.0007501
[51] Sun, L., Jia, T., Yan, S., Chu, J., and Jia, Z. (2016), “Research on prediction of pile running during large diameter pipe piles driving,” Journal of China University of Petroleum (Edition of Natural Science), 2016,40(2):115-122.
[52] Sun, L., Wang, Y., Guo, W., Yan, S., Chu, J., and Liu, X. (2018), “Case study on pile running during the driving process of large-diameter pipe piles,” Marine Georesources & Geotechnology, vol. 36, no. 6, pp. 709–721.
[53] Sheng D, Eigenbrod KD, Wriggers P. (2005), “Finite element analysis of pile installation using large-slip frictional contact,” Comput Geotech;32(1):17–26.
[54] Randolph, M. F. (2003), “Science and empiricism in pile foundation design,” Geotechnique, Vol. 53, no. 10, pp. 847–875.
[55] Smith, E. A. L. (1962), “Pile-driving analysis by the wave equation,” Transactions of the American Society of Civil Engineers, Vol. 127, No. 1, pp. 1145-1170.
[56] Salgado, R., Mitchell, J. K. and Jamiolkowski, M. (1998), “Calibration chamber size effects on penetration resistance in sand,” J. Geotech. Geoenviron. Eng. 124 (9): 878–888.
[57] Salgado, R., Lee, J. & Kim, K. (2002), “Load tests on pipe piles for development of CPT-based design method,” Final report, FHWA/IN/JTRP-2002/4.
[58] Tvedt, G. & Fredriksen, F. (2003), “E18 Ny motorvegbru iDrammen. Prøvebelastning av peler,” Proceedings from the conference on Rock Blasting and Geotechnics, Oslo.
[59] Technical Manual TM 3-34.22 (FM 3-34.343) / MCRP 3-17.1B Military Non-standard Fixed Bridging, Washington, DC; 2013.
[60] Terzaghi, K. and Peck, R. (1967), “Soil Mechanics in Engineering Practice,”2nd Edition, John Wiley, New York
[61] van den Berg P. (1994), “Analysis of soil penetration.” Ph.DThesis Netherlands: Delft Univ.
[62] Xu, X. & Lehane, B.M. (2005), “Evaluation of end-bearing capacity of closed-ended pile in sand from CPT data,”in Proc., ISFOG, Perth.
[63] Yan, S., Jia, Z., Liu,W., Li, J.(2015), “Research on the large diameter and supper long pile running under self-Weight in the ocean engineering,” Journal of Coastal Research. 73: 809–14.
[64] Yang,Z. X., Gao, Y. Y., Jardine, R. J.,Guo, W. B. (2020) “Journal of Geotechnical and Geoenvironmental Engineering, ”Volume 146 Issue 6.
[65] Zhang, M., Tao,M. (2011).“A parametric study on factors affecting ground vibrations duringpile driving through finite element simulations. ” Atlanta: Geo-Risk: Geotechnical Risk Assessment and Management; 2011. p. 931–8.
[66] 朱金元、謝明志、羅建明、王俊欽、溫志中、林鳳嬌、周偉龍、葉秀貞(2016),「離岸風電水下技術研發」,行政院交通部,台北市。
[67] 呂學德、何無忌、呂威賢、胡哲魁、陳美蘭、連永順(2015),「台灣離岸風力潛能與優選離岸區塊場址研究」,中華民國第三十六屆電力工程研討會,私立中原大學,桃園市。
[68] 張志鵬、劉潤(2015),「基於GRLWEAP的樁基可打入性影響因素研究」,岩土力學,2015年S1期。
[69] 日本土質工學會(1977),「地盤改良調查、設計與施工」報告書。
[70] 吳育霖(2020),「打擊樁軸向摩擦阻抗分析」,碩士論文,國立成功大學水利及海洋工程學系,台南市。
[71] 張有恆(1995),「淺談基樁之承載力試驗」,地工技術雜誌,第五十二期,pp.71~83。
[72] 陳圭璋(1990),「海岸地區打樁動力分析之探討」,中華民國第十二屆海洋工程研討會論文集。
[73] 許哲維(2018),「地工設計參數不確定性對大口徑單樁基礎穩定性影響研究」,碩士論文,國立成功大學水利及海洋工程學系,台南市。
[74] 張凱竣(2020),「考量CPT參數不確定性之離岸風場海床土壤液化險量評估」, 碩士論文,.國立成功大學水利及海洋工程學系,台南市。
[75] 李柏翰(2021),「彰化地區離岸風場土壤條件初步研究」,碩士論文,國立成功大學水利及海洋工程學系,台南市。
校內:不公開