簡易檢索 / 詳目顯示

研究生: 羅雲碩
Lo, Yun-Shuo
論文名稱: 表觀遺傳年齡加速指標與腎功能之相關性
The association between epigenetic age acceleration and kidney function in Taiwan
指導教授: 李佩珍
Lee, Pei-Chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 公共衛生學系
Department of Public Health
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 76
中文關鍵詞: 生物年齡表觀遺傳年齡加速細懸浮微粒腎功能
外文關鍵詞: biological age, epigenetic age acceleration, kidney function, particulate matter
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第壹章 前言 1 第一節 研究背景 1 第二節 研究目的 2 第貳章 文獻回顧 4 第一節 慢性腎臟病之流行病學數據 4 第二節 腎功能之臨床相關指標 5 第三節 表觀遺傳年齡加速之應用 6 第四節 表觀遺傳年齡加速與腎功能之相關性 9 第五節 細懸浮微粒與腎功能之相關性 12 第六節 細懸浮微粒與表觀遺傳年齡加速之相關性 13 第參章 研究方法 15 第一節 研究架構 15 第二節 資料來源與研究對象 16 第三節 腎功能指標 18 第四節 表觀遺傳年齡加速指標 18 第五節 細懸浮微粒暴露 19 第六節 統計方法 20 第肆章 結果 22 第一節 描述性統計結果 22 第二節 表觀遺傳年齡加速與腎功能之相關性結果 22 第三節 表觀遺傳年齡加速於細懸浮微粒與腎功能相關性之中介效應結果 24 第伍章 討論 26 第一節 研究結果概述 26 第二節 相關性結果之闡釋 26 第三節 中介效應結果之闡釋 28 第四節 研究結果的應用 29 第五節 研究限制 29 第陸章 結論 31 第柒章 參考文獻 32 表 41 圖 61

    Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., & Irizarry, R. A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 30(10), 1363-1369. https://doi.org/10.1093/bioinformatics/btu049
    Baker, G. T., & Sprott, R. L. (1988). Biomarkers of aging. Experimental Gerontology, 23(4-5), 223-239. https://doi.org/10.1016/0531-5565(88)90025-3
    Bell, C. G., Lowe, R., Adams, P. D., Baccarelli, A. A., Beck, S., Bell, J. T., Christensen, B. C., Gladyshev, V. N., Heijmans, B. T., Horvath, S., Ideker, T., Issa, J. J., Kelsey, K. T., Marioni, R. E., Reik, W., Relton, C. L., Schalkwyk, L. C., Teschendorff, A. E., Wagner, W., . . . Rakyan, V. K. (2019). DNA methylation aging clocks: challenges and recommendations. Genome Biology, 20(1), 249. https://doi.org/10.1186/s13059-019-1824-y
    Bidin, M. Z., Shah, A. M., Stanslas, J., & Seong, C. L. T. (2019). Blood and urine biomarkers in chronic kidney disease: An update. Clinica Chimica Acta, 495, 239-250. https://doi.org/10.1016/j.cca.2019.04.069
    Bikbov, B., Purcell, C. A., Levey, A. S., Smith, M., Abdoli, A., Abebe, M., Adebayo, O. M., Afarideh, M., Agarwal, S. K., & Agudelo-Botero, M. (2020). Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 395(10225), 709-733. https://doi.org/10.1016/S0140-6736(20)30045-3
    Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to ESRD. Journal of the American Society of Nephrology, 29(1), 218-230. https://doi.org/10.1681/asn.2017030253
    Brück, K., Stel, V. S., Gambaro, G., Hallan, S., Völzke, H., Ärnlöv, J., Kastarinen, M., Guessous, I., Vinhas, J., Stengel, B., Brenner, H., Chudek, J., Romundstad, S., Tomson, C., Gonzalez, A. O., Bello, A. K., Ferrieres, J., Palmieri, L., Browne, G., . . . Jager, K. J. (2016). CKD Prevalence Varies across the European General Population. Journal of the American Society of Nephrology, 27(7), 2135-2147. https://doi.org/10.1681/asn.2015050542
    Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C., & Verdin, E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature, 571(7764), 183-192. https://doi.org/10.1038/s41586-019-1365-2
    Centers for Disease Control and Prevention. (2023). Chronic Kidney Disease in the United States, 2023. Retrieved July 4, 2023 from https://www.cdc.gov/kidney-disease/php/data-research/index.html
    Chan, T. C., Zhang, Z., Lin, B. C., Lin, C., Deng, H. B., Chuang, Y. C., Chan, J. W. M., Jiang, W. K., Tam, T., Chang, L. Y., Hoek, G., Lau, A. K. H., & Lao, X. Q. (2018). Long-Term Exposure to Ambient Fine Particulate Matter and Chronic Kidney Disease: A Cohort Study. Environmental Health Perspectives, 126(10), 107002. https://doi.org/10.1289/ehp3304
    Chang, X. Y., & Lin, W. Y. (2023). Epigenetic age acceleration mediates the association between smoking and diabetes-related outcomes. Clinical Epigenetics, 15(1), 94. https://doi.org/10.1186/s13148-023-01512-x
    Chen, L. I., Guh, J. Y., Wu, K. D., Chen, Y. M., Kuo, M. C., Hwang, S. J., Chen, T. H., & Chen, H. C. (2014). Modification of diet in renal disease (MDRD) study and CKD epidemiology collaboration (CKD-EPI) equations for Taiwanese adults. PLoS One, 9(6), e99645. https://doi.org/10.1371/journal.pone.0099645
    Chonchol, M., Shlipak, M. G., Katz, R., Sarnak, M. J., Newman, A. B., Siscovick, D. S., Kestenbaum, B., Carney, J. K., & Fried, L. F. (2007). Relationship of uric acid with progression of kidney disease. American Journal of Kidney Diseases, 50(2), 239-247. https://doi.org/10.1053/j.ajkd.2007.05.013
    Chou, Y. H., & Chen, Y. M. (2021). Aging and Renal Disease: Old Questions for New Challenges. Aging and Disease, 12(2), 515-528. https://doi.org/10.14336/ad.2020.0703
    Crimmins, E. M., Klopack, E. T., & Kim, J. K. (2024). Generations of epigenetic clocks and their links to socioeconomic status in the Health and Retirement Study. Epigenomics, 16(14), 1031-1042. https://doi.org/10.1080/17501911.2024.2373682
    Desideri, G., Castaldo, G., Lombardi, A., Mussap, M., Testa, A., Pontremoli, R., Punzi, L., & Borghi, C. (2014). Is it time to revise the normal range of serum uric acid levels? European Review for Medical and Pharmacological Sciences, 18(9), 1295-1306.
    Drawz, P., & Rahman, M. (2015). Chronic kidney disease. Annals of Internal Medicine, 162(11), Itc1-16. https://doi.org/10.7326/aitc201506020
    Du, P., Zhang, X., Huang, C. C., Jafari, N., Kibbe, W. A., Hou, L., & Lin, S. M. (2010). Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics, 11, 587. https://doi.org/10.1186/1471-2105-11-587
    Duan, R., Fu, Q., Sun, Y., & Li, Q. (2022). Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Research Reviews, 81, 101743. https://doi.org/10.1016/j.arr.2022.101743
    ElGendy, K., Malcomson, F. C., Lara, J. G., Bradburn, D. M., & Mathers, J. C. (2018). Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. The British Journal of Nutrition, 120(9), 961-976. https://doi.org/10.1017/s000711451800243x
    Föhr, T., Waller, K., Viljanen, A., Sanchez, R., Ollikainen, M., Rantanen, T., Kaprio, J., & Sillanpää, E. (2021). Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18 year follow-up study in older female twin pairs. Clinical Epigenetics, 13(1), 128. https://doi.org/10.1186/s13148-021-01112-7
    Fahy, G. M., Brooke, R. T., Watson, J. P., Good, Z., Vasanawala, S. S., Maecker, H., Leipold, M. D., Lin, D. T. S., Kobor, M. S., & Horvath, S. (2019). Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell, 18(6), e13028. https://doi.org/10.1111/acel.13028
    Fan, C. T., Lin, J. C., & Lee, C. H. (2008). Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics, 9(2), 235-246. https://doi.org/10.2217/14622416.9.2.235
    Fassett, R. G., Venuthurupalli, S. K., Gobe, G. C., Coombes, J. S., Cooper, M. A., & Hoy, W. E. (2011). Biomarkers in chronic kidney disease: a review. Kidney International, 80(8), 806-821. https://doi.org/10.1038/ki.2011.198
    Feng, Y. A., Chen, C. Y., Chen, T. T., Kuo, P. H., Hsu, Y. H., Yang, H. I., Chen, W. J., Su, M. W., Chu, H. W., Shen, C. Y., Ge, T., Huang, H., & Lin, Y. F. (2022). Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell Genomics, 2(11), 100197. https://doi.org/10.1016/j.xgen.2022.100197
    Field, A. E., Robertson, N. A., Wang, T., Havas, A., Ideker, T., & Adams, P. D. (2018). DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Molecular Cell, 71(6), 882-895. https://doi.org/10.1016/j.molcel.2018.08.008
    Fiorito, G., McCrory, C., Robinson, O., Carmeli, C., Ochoa-Rosales, C., Zhang, Y., Colicino, E., Dugué, P. A., Artaud, F., McKay, G. J., Jeong, A., Mishra, P. P., Nøst, T. H., Krogh, V., Panico, S., Sacerdote, C., Tumino, R., Palli, D., Matullo, G., . . . Polidoro, S. (2019). Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging (Albany NY), 11(7), 2045-2070. https://doi.org/10.18632/aging.101900
    Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C. W., Brown, J. C., Friedman, J., He, J., Heuton, K. R., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K., . . . Murray, C. J. L. (2018). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 392(10159), 2052-2090. https://doi.org/10.1016/s0140-6736(18)31694-5
    Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E., & Ryan, J. (2019). The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clinical Epigenetics, 11(1), 62. https://doi.org/10.1186/s13148-019-0656-7
    Fraser, S. D. S., & Roderick, P. J. (2019). Kidney disease in the Global Burden of Disease Study 2017. Nature Reviews Nephrology, 15(4), 193-194. https://doi.org/10.1038/s41581-019-0120-0
    Giordano, C., Karasik, O., King-Morris, K., & Asmar, A. (2015). Uric Acid as a Marker of Kidney Disease: Review of the Current Literature. Disease Markers, 2015, 382918. https://doi.org/10.1155/2015/382918
    Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49(2), 359-367. https://doi.org/10.1016/j.molcel.2012.10.016
    Hommos, M. S., Glassock, R. J., & Rule, A. D. (2017). Structural and Functional Changes in Human Kidneys with Healthy Aging. Journal of the American Society of Nephrology, 28(10), 2838-2844. https://doi.org/10.1681/asn.2017040421
    Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115
    Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371-384. https://doi.org/10.1038/s41576-018-0004-3
    Hosten, A. O. (1990). BUN and Creatinine. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations (3 ed., pp. 874-878). Butterworths. https://www.ncbi.nlm.nih.gov/books/NBK305/
    Johnson, R. J., Lanaspa, M. A., & Gaucher, E. A. (2011). Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations. Seminars in Nephrology, 31(5), 394-399. https://doi.org/10.1016/j.semnephrol.2011.08.002
    Jylhävä, J., Pedersen, N. L., & Hägg, S. (2017). Biological Age Predictors. EBioMedicine, 21, 29-36. https://doi.org/10.1016/j.ebiom.2017.03.046
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. (2013). KDIGO 2012 Clinical Practice Guideline for then Evaluation and Management of Chronic Kidney Disease. Kidney International Supplements, 3, 1-150.
    Koenigsberg, S. H., Chang, C. J., Ish, J., Xu, Z., Kresovich, J. K., Lawrence, K. G., Kaufman, J. D., Sandler, D. P., Taylor, J. A., & White, A. J. (2023). Air pollution and epigenetic aging among Black and White women in the US. Environment International, 181, 108270. https://doi.org/10.1016/j.envint.2023.108270
    Kuźma, Ł., Małyszko, J., Bachórzewska-Gajewska, H., Kralisz, P., & Dobrzycki, S. (2021). Exposure to air pollution and renal function. Scientific Reports, 11(1), 11419. https://doi.org/10.1038/s41598-021-91000-0
    Lai, T. S., Hsu, C. C., Lin, M. H., Wu, V. C., & Chen, Y. M. (2022). Trends in the incidence and prevalence of end-stage kidney disease requiring dialysis in Taiwan: 2010-2018. Journal of the Formosan Medical Association, 121 Suppl 1, S5-S11. https://doi.org/10.1016/j.jfma.2021.12.013
    Levey, A. S., Becker, C., & Inker, L. A. (2015). Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. The Journal of the American Medical Association, 313(8), 837-846. https://doi.org/10.1001/jama.2015.0602
    Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., 3rd, Feldman, H. I., Kusek, J. W., Eggers, P., Van Lente, F., Greene, T., & Coresh, J. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604-612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
    Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10(4), 573-591. https://doi.org/10.18632/aging.101414
    Lin, S. Y., Ju, S. W., Lin, C. L., Hsu, W. H., Lin, C. C., Ting, I. W., & Kao, C. H. (2020). Air pollutants and subsequent risk of chronic kidney disease and end-stage renal disease: A population-based cohort study. Environmental Pollution, 261, 114154. https://doi.org/10.1016/j.envpol.2020.114154
    Lin, W. Y. (2023). Epigenetic clocks derived from western samples differentially reflect Taiwanese health outcomes. Frontiers in Genetics, 14, 1089819. https://doi.org/10.3389/fgene.2023.1089819
    Liu, H., Zhang, X., Sun, Z., & Chen, Y. (2023). Ambient Fine Particulate Matter and Cancer: Current Evidence and Future Perspectives. Chemical Research in Toxicology, 36(2), 141-156. https://doi.org/10.1021/acs.chemrestox.2c00216
    Liu, M., Li, X. C., Lu, L., Cao, Y., Sun, R. R., Chen, S., & Zhang, P. Y. (2014). Cardiovascular disease and its relationship with chronic kidney disease. European Review for Medical and Pharmacological Sciences, 18(19), 2918-2926.
    Liyanage, T., Toyama, T., Hockham, C., Ninomiya, T., Perkovic, V., Woodward, M., Fukagawa, M., Matsushita, K., Praditpornsilpa, K., Hooi, L. S., Iseki, K., Lin, M. Y., Stirnadel-Farrant, H. A., Jha, V., & Jun, M. (2022). Prevalence of chronic kidney disease in Asia: a systematic review and analysis. BMJ Global Health, 7(1). https://doi.org/10.1136/bmjgh-2021-007525
    Lo, Y. H., & Lin, W. Y. (2022). Cardiovascular health and four epigenetic clocks. Clinical Epigenetics, 14(1), 73. https://doi.org/10.1186/s13148-022-01295-7
    Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World Journal of Nephrology, 4(1), 57-73. https://doi.org/10.5527/wjn.v4.i1.57
    Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 11(2), 303-327. https://doi.org/10.18632/aging.101684
    Matsushita, K., van der Velde, M., Astor, B. C., Woodward, M., Levey, A. S., de Jong, P. E., Coresh, J., & Gansevoort, R. T. (2010). Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet, 375(9731), 2073-2081. https://doi.org/10.1016/s0140-6736(10)60674-5
    Matías-García, P. R., Ward-Caviness, C. K., Raffield, L. M., Gao, X., Zhang, Y., Wilson, R., Gào, X., Nano, J., Bostom, A., Colicino, E., Correa, A., Coull, B., Eaton, C., Hou, L., Just, A. C., Kunze, S., Lange, L., Lange, E., Lin, X., . . . Waldenberger, M. (2021). DNAm-based signatures of accelerated aging and mortality in blood are associated with low renal function. Clinical Epigenetics, 13(1), 121. https://doi.org/10.1186/s13148-021-01082-w
    McCartney, D. L., Min, J. L., Richmond, R. C., Lu, A. T., Sobczyk, M. K., Davies, G., Broer, L., Guo, X., Jeong, A., Jung, J., Kasela, S., Katrinli, S., Kuo, P. L., Matias-Garcia, P. R., Mishra, P. P., Nygaard, M., Palviainen, T., Patki, A., Raffield, L. M., . . . Marioni, R. E. (2021). Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biology, 22(1), 194. https://doi.org/10.1186/s13059-021-02398-9
    McCartney, D. L., Stevenson, A. J., Walker, R. M., Gibson, J., Morris, S. W., Campbell, A., Murray, A. D., Whalley, H. C., Porteous, D. J., McIntosh, A. M., Evans, K. L., Deary, I. J., & Marioni, R. E. (2018). Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer's disease. Alzheimer's & Dementia (Amsterdam, Netherlands), 10, 429-437. https://doi.org/10.1016/j.dadm.2018.05.006
    Nwanaji-Enwerem, J. C., Colicino, E., Trevisi, L., Kloog, I., Just, A. C., Shen, J., Brennan, K., Dereix, A., Hou, L., Vokonas, P., Schwartz, J., & Baccarelli, A. A. (2016). Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environmental Epigenetics, 2(2), dvw006. https://doi.org/10.1093/eep/dvw006
    Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., & Boks, M. P. (2021). A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Research Reviews, 69, 101348. https://doi.org/10.1016/j.arr.2021.101348
    Oh, J., Ye, S., Kang, D. H., & Ha, E. (2022). Association between exposure to fine particulate matter and kidney function: Results from the Korea National Health and Nutrition Examination Survey. Environmental Research, 212(Pt A), 113080. https://doi.org/10.1016/j.envres.2022.113080
    Ortiz, A., Mattace-Raso, F., Soler, M. J., & Fouque, D. (2022). Ageing meets kidney disease. Clinical Kidney Journal, 15(10), 1793-1796. https://doi.org/10.1093/ckj/sfac151
    Pan, Y., Sun, X., Huang, Z., Zhang, R., Li, C., Anderson, A. H., Lash, J. P., & Kelly, T. N. (2023). Effects of epigenetic age acceleration on kidney function: a Mendelian randomization study. Clinical Epigenetics, 15(1), 61. https://doi.org/10.1186/s13148-023-01476-y
    Perna, L., Zhang, Y., Mons, U., Holleczek, B., Saum, K. U., & Brenner, H. (2016). Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clinical Epigenetics, 8, 64. https://doi.org/10.1186/s13148-016-0228-z
    Provenzano, M., Coppolino, G., Faga, T., Garofalo, C., Serra, R., & Andreucci, M. (2019). Epidemiology of cardiovascular risk in chronic kidney disease patients: the real silent killer. Reviews in Cardiovascular Medicine, 20(4), 209-220. https://doi.org/10.31083/j.rcm.2019.04.548
    Quach, A., Levine, M. E., Tanaka, T., Lu, A. T., Chen, B. H., Ferrucci, L., Ritz, B., Bandinelli, S., Neuhouser, M. L., Beasley, J. M., Snetselaar, L., Wallace, R. B., Tsao, P. S., Absher, D., Assimes, T. L., Stewart, J. D., Li, Y., Hou, L., Baccarelli, A. A., . . . Horvath, S. (2017). Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY), 9(2), 419-446. https://doi.org/10.18632/aging.101168
    Rasking, L., Vanbrabant, K., Bové, H., Plusquin, M., De Vusser, K., Roels, H. A., & Nawrot, T. S. (2022). Adverse Effects of fine particulate matter on human kidney functioning: a systematic review. Environmental Health, 21(1), 24. https://doi.org/10.1186/s12940-021-00827-7
    Roberts, J. D., Vittinghoff, E., Lu, A. T., Alonso, A., Wang, B., Sitlani, C. M., Mohammadi-Shemirani, P., Fornage, M., Kornej, J., Brody, J. A., Arking, D. E., Lin, H., Heckbert, S. R., Prokic, I., Ghanbari, M., Skanes, A. C., Bartz, T. M., Perez, M. V., Taylor, K. D., . . . Marcus, G. M. (2021). Epigenetic Age and the Risk of Incident Atrial Fibrillation. Circulation: Genomic and Precision Medicine, 144(24), 1899-1911. https://doi.org/10.1161/circulationaha.121.056456
    Rowland, J., Akbarov, A., Maan, A., Eales, J., Dormer, J., & Tomaszewski, M. (2018). Tick-Tock Chimes the Kidney Clock - from Biology of Renal Ageing to Clinical Applications. Kidney & Blood Pressure Research, 43(1), 55-67. https://doi.org/10.1159/000486907
    Rule, A. D., Amer, H., Cornell, L. D., Taler, S. J., Cosio, F. G., Kremers, W. K., Textor, S. C., & Stegall, M. D. (2010). The association between age and nephrosclerosis on renal biopsy among healthy adults. Annals of Internal Medicine, 152(9), 561-567. https://doi.org/10.7326/0003-4819-152-9-201005040-00006
    Seals, D. R., Justice, J. N., & LaRocca, T. J. (2016). Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. The Journal of Physiology, 594(8), 2001-2024. https://doi.org/10.1113/jphysiol.2014.282665
    Sundström, J., Bodegard, J., Bollmann, A., Vervloet, M. G., Mark, P. B., Karasik, A., Taveira-Gomes, T., Botana, M., Birkeland, K. I., Thuresson, M., Jäger, L., Sood, M. M., VanPottelbergh, G., Tangri, N., & CaReMe CKD Investigators. (2022). Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: The CaReMe CKD study. The Lancet Regional Health. Europe, 20, 100438. https://doi.org/10.1016/j.lanepe.2022.100438
    Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). mediation: R Package for Causal Mediation Analysis. Journal of Statistical Software, 59(5), 1 - 38. https://doi.org/10.18637/jss.v059.i05
    Triche, T. J., Jr., Weisenberger, D. J., Van Den Berg, D., Laird, P. W., & Siegmund, K. D. (2013). Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Research, 41(7), e90. https://doi.org/10.1093/nar/gkt090
    Uchehara, B., Coulter Kwee, L., Regan, J., Chatterjee, R., Eckstrand, J., Swope, S., Gold, G., Schaack, T., Douglas, P., Mettu, P., Haddad, F., Shore, S., Hernandez, A., Mahaffey, K. W., Pagidipati, N., & Shah, S. H. (2023). Accelerated Epigenetic Aging Is Associated With Multiple Cardiometabolic, Hematologic, and Renal Abnormalities: A Project Baseline Health Substudy. Circulation: Genomic and Precision Medicine, 16(3), 216-223. https://doi.org/10.1161/circgen.122.003772
    Vart, P., & Grams, M. E. (2016). Measuring and Assessing Kidney Function. Seminars in Nephrology, 36(4), 262-272. https://doi.org/10.1016/j.semnephrol.2016.05.003
    Warnock, D. G., Muntner, P., McCullough, P. A., Zhang, X., McClure, L. A., Zakai, N., Cushman, M., Newsome, B. B., Kewalramani, R., Steffes, M. W., Howard, G., & McClellan, W. M. (2010). Kidney function, albuminuria, and all-cause mortality in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study. American Journal of Kidney Diseases, 56(5), 861-871. https://doi.org/10.1053/j.ajkd.2010.05.017
    Wei, S. Y., Pan, S. Y., Li, B., Chen, Y. M., & Lin, S. L. (2020). Rejuvenation: Turning back the clock of aging kidney. Journal of the Formosan Medical Association 119(5), 898-906. https://doi.org/10.1016/j.jfma.2019.05.020
    White, A. J., Kresovich, J. K., Keller, J. P., Xu, Z., Kaufman, J. D., Weinberg, C. R., Taylor, J. A., & Sandler, D. P. (2019). Air pollution, particulate matter composition and methylation-based biologic age. Environment International, 132, 105071. https://doi.org/10.1016/j.envint.2019.105071
    Wong, P. Y., Lee, H. Y., Chen, Y. C., Zeng, Y. T., Chern, Y. R., Chen, N. T., Candice Lung, S. C., Su, H. J., & Wu, C. D. (2021). Using a land use regression model with machine learning to estimate ground level PM(2.5). Environmental Pollution, 277, 116846. https://doi.org/10.1016/j.envpol.2021.116846
    World Health Organization. (2018). Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. World Health Organization.
    Wu, C. S., Hsu, L. Y., Shen, C. Y., Chen, W. J., Lin, M. C., Fan, C. C., & Wang, S. H. (2024). Comparison of Demographic and Clinical Characteristics of Taiwan Biobank Participants with Nonparticipants. Journal of Epidemiology. https://doi.org/10.2188/jea.JE20240297
    Wu, H., Eckhardt, C. M., & Baccarelli, A. A. (2023). Molecular mechanisms of environmental exposures and human disease. Nature Reviews. Genetics, 24(5), 332-344. https://doi.org/10.1038/s41576-022-00569-3
    Wuttke, M., Li, Y., Li, M., Sieber, K. B., Feitosa, M. F., Gorski, M., Tin, A., Wang, L., Chu, A. Y., Hoppmann, A., Kirsten, H., Giri, A., Chai, J. F., Sveinbjornsson, G., Tayo, B. O., Nutile, T., Fuchsberger, C., Marten, J., Cocca, M., . . . Pattaro, C. (2019). A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 51(6), 957-972. https://doi.org/10.1038/s41588-019-0407-x
    Xu, X., Nie, S., Ding, H., & Hou, F. F. (2018). Environmental pollution and kidney diseases. Nature Reviews Nephrology, 14(5), 313-324. https://doi.org/10.1038/nrneph.2018.11
    Yang, L., Zhang, Y., Qi, W., Zhao, T., Zhang, L., Zhou, L., & Ye, L. (2022). Adverse effects of PM(2.5) on cardiovascular diseases. Reviews on Environmental Health, 37(1), 71-80. https://doi.org/10.1515/reveh-2020-0155
    Ye, J. J., Wang, S. S., Fang, Y., Zhang, X. J., & Hu, C. Y. (2021). Ambient air pollution exposure and risk of chronic kidney disease: A systematic review of the literature and meta-analysis. Environmental Research, 195, 110867. https://doi.org/10.1016/j.envres.2021.110867
    Yusipov, I., Kondakova, E., Kalyakulina, A., Krivonosov, M., Lobanova, N., Bacalini, M. G., Franceschi, C., Vedunova, M., & Ivanchenko, M. (2022). Accelerated epigenetic aging and inflammatory/immunological profile (ipAGE) in patients with chronic kidney disease. Geroscience, 44(2), 817-834. https://doi.org/10.1007/s11357-022-00540-4
    許志成、吳麥斯、黃尚志、林裕峯、許永和、邱怡文(2022)。2021台灣腎病年報。國家衛生研究院。
    劉介宇、洪永泰、莊義利、陳怡如、翁文舜、劉季鑫、梁賡義(2006)。台灣地區鄉鎮市區發展類型應用於大型健康調查抽樣設計之研究。健康管理學刊,4(1), 1-22。 https://doi.org/10.29805/jhm.200606.0001

    無法下載圖示 校內:2028-01-31公開
    校外:2028-01-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE