| 研究生: |
羅雲碩 Lo, Yun-Shuo |
|---|---|
| 論文名稱: |
表觀遺傳年齡加速指標與腎功能之相關性 The association between epigenetic age acceleration and kidney function in Taiwan |
| 指導教授: |
李佩珍
Lee, Pei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 公共衛生學系 Department of Public Health |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 生物年齡 、表觀遺傳年齡加速 、細懸浮微粒 、腎功能 |
| 外文關鍵詞: | biological age, epigenetic age acceleration, kidney function, particulate matter |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., & Irizarry, R. A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 30(10), 1363-1369. https://doi.org/10.1093/bioinformatics/btu049
Baker, G. T., & Sprott, R. L. (1988). Biomarkers of aging. Experimental Gerontology, 23(4-5), 223-239. https://doi.org/10.1016/0531-5565(88)90025-3
Bell, C. G., Lowe, R., Adams, P. D., Baccarelli, A. A., Beck, S., Bell, J. T., Christensen, B. C., Gladyshev, V. N., Heijmans, B. T., Horvath, S., Ideker, T., Issa, J. J., Kelsey, K. T., Marioni, R. E., Reik, W., Relton, C. L., Schalkwyk, L. C., Teschendorff, A. E., Wagner, W., . . . Rakyan, V. K. (2019). DNA methylation aging clocks: challenges and recommendations. Genome Biology, 20(1), 249. https://doi.org/10.1186/s13059-019-1824-y
Bidin, M. Z., Shah, A. M., Stanslas, J., & Seong, C. L. T. (2019). Blood and urine biomarkers in chronic kidney disease: An update. Clinica Chimica Acta, 495, 239-250. https://doi.org/10.1016/j.cca.2019.04.069
Bikbov, B., Purcell, C. A., Levey, A. S., Smith, M., Abdoli, A., Abebe, M., Adebayo, O. M., Afarideh, M., Agarwal, S. K., & Agudelo-Botero, M. (2020). Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 395(10225), 709-733. https://doi.org/10.1016/S0140-6736(20)30045-3
Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to ESRD. Journal of the American Society of Nephrology, 29(1), 218-230. https://doi.org/10.1681/asn.2017030253
Brück, K., Stel, V. S., Gambaro, G., Hallan, S., Völzke, H., Ärnlöv, J., Kastarinen, M., Guessous, I., Vinhas, J., Stengel, B., Brenner, H., Chudek, J., Romundstad, S., Tomson, C., Gonzalez, A. O., Bello, A. K., Ferrieres, J., Palmieri, L., Browne, G., . . . Jager, K. J. (2016). CKD Prevalence Varies across the European General Population. Journal of the American Society of Nephrology, 27(7), 2135-2147. https://doi.org/10.1681/asn.2015050542
Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C., & Verdin, E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature, 571(7764), 183-192. https://doi.org/10.1038/s41586-019-1365-2
Centers for Disease Control and Prevention. (2023). Chronic Kidney Disease in the United States, 2023. Retrieved July 4, 2023 from https://www.cdc.gov/kidney-disease/php/data-research/index.html
Chan, T. C., Zhang, Z., Lin, B. C., Lin, C., Deng, H. B., Chuang, Y. C., Chan, J. W. M., Jiang, W. K., Tam, T., Chang, L. Y., Hoek, G., Lau, A. K. H., & Lao, X. Q. (2018). Long-Term Exposure to Ambient Fine Particulate Matter and Chronic Kidney Disease: A Cohort Study. Environmental Health Perspectives, 126(10), 107002. https://doi.org/10.1289/ehp3304
Chang, X. Y., & Lin, W. Y. (2023). Epigenetic age acceleration mediates the association between smoking and diabetes-related outcomes. Clinical Epigenetics, 15(1), 94. https://doi.org/10.1186/s13148-023-01512-x
Chen, L. I., Guh, J. Y., Wu, K. D., Chen, Y. M., Kuo, M. C., Hwang, S. J., Chen, T. H., & Chen, H. C. (2014). Modification of diet in renal disease (MDRD) study and CKD epidemiology collaboration (CKD-EPI) equations for Taiwanese adults. PLoS One, 9(6), e99645. https://doi.org/10.1371/journal.pone.0099645
Chonchol, M., Shlipak, M. G., Katz, R., Sarnak, M. J., Newman, A. B., Siscovick, D. S., Kestenbaum, B., Carney, J. K., & Fried, L. F. (2007). Relationship of uric acid with progression of kidney disease. American Journal of Kidney Diseases, 50(2), 239-247. https://doi.org/10.1053/j.ajkd.2007.05.013
Chou, Y. H., & Chen, Y. M. (2021). Aging and Renal Disease: Old Questions for New Challenges. Aging and Disease, 12(2), 515-528. https://doi.org/10.14336/ad.2020.0703
Crimmins, E. M., Klopack, E. T., & Kim, J. K. (2024). Generations of epigenetic clocks and their links to socioeconomic status in the Health and Retirement Study. Epigenomics, 16(14), 1031-1042. https://doi.org/10.1080/17501911.2024.2373682
Desideri, G., Castaldo, G., Lombardi, A., Mussap, M., Testa, A., Pontremoli, R., Punzi, L., & Borghi, C. (2014). Is it time to revise the normal range of serum uric acid levels? European Review for Medical and Pharmacological Sciences, 18(9), 1295-1306.
Drawz, P., & Rahman, M. (2015). Chronic kidney disease. Annals of Internal Medicine, 162(11), Itc1-16. https://doi.org/10.7326/aitc201506020
Du, P., Zhang, X., Huang, C. C., Jafari, N., Kibbe, W. A., Hou, L., & Lin, S. M. (2010). Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics, 11, 587. https://doi.org/10.1186/1471-2105-11-587
Duan, R., Fu, Q., Sun, Y., & Li, Q. (2022). Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Research Reviews, 81, 101743. https://doi.org/10.1016/j.arr.2022.101743
ElGendy, K., Malcomson, F. C., Lara, J. G., Bradburn, D. M., & Mathers, J. C. (2018). Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. The British Journal of Nutrition, 120(9), 961-976. https://doi.org/10.1017/s000711451800243x
Föhr, T., Waller, K., Viljanen, A., Sanchez, R., Ollikainen, M., Rantanen, T., Kaprio, J., & Sillanpää, E. (2021). Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18 year follow-up study in older female twin pairs. Clinical Epigenetics, 13(1), 128. https://doi.org/10.1186/s13148-021-01112-7
Fahy, G. M., Brooke, R. T., Watson, J. P., Good, Z., Vasanawala, S. S., Maecker, H., Leipold, M. D., Lin, D. T. S., Kobor, M. S., & Horvath, S. (2019). Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell, 18(6), e13028. https://doi.org/10.1111/acel.13028
Fan, C. T., Lin, J. C., & Lee, C. H. (2008). Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics, 9(2), 235-246. https://doi.org/10.2217/14622416.9.2.235
Fassett, R. G., Venuthurupalli, S. K., Gobe, G. C., Coombes, J. S., Cooper, M. A., & Hoy, W. E. (2011). Biomarkers in chronic kidney disease: a review. Kidney International, 80(8), 806-821. https://doi.org/10.1038/ki.2011.198
Feng, Y. A., Chen, C. Y., Chen, T. T., Kuo, P. H., Hsu, Y. H., Yang, H. I., Chen, W. J., Su, M. W., Chu, H. W., Shen, C. Y., Ge, T., Huang, H., & Lin, Y. F. (2022). Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell Genomics, 2(11), 100197. https://doi.org/10.1016/j.xgen.2022.100197
Field, A. E., Robertson, N. A., Wang, T., Havas, A., Ideker, T., & Adams, P. D. (2018). DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Molecular Cell, 71(6), 882-895. https://doi.org/10.1016/j.molcel.2018.08.008
Fiorito, G., McCrory, C., Robinson, O., Carmeli, C., Ochoa-Rosales, C., Zhang, Y., Colicino, E., Dugué, P. A., Artaud, F., McKay, G. J., Jeong, A., Mishra, P. P., Nøst, T. H., Krogh, V., Panico, S., Sacerdote, C., Tumino, R., Palli, D., Matullo, G., . . . Polidoro, S. (2019). Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging (Albany NY), 11(7), 2045-2070. https://doi.org/10.18632/aging.101900
Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C. W., Brown, J. C., Friedman, J., He, J., Heuton, K. R., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K., . . . Murray, C. J. L. (2018). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 392(10159), 2052-2090. https://doi.org/10.1016/s0140-6736(18)31694-5
Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E., & Ryan, J. (2019). The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clinical Epigenetics, 11(1), 62. https://doi.org/10.1186/s13148-019-0656-7
Fraser, S. D. S., & Roderick, P. J. (2019). Kidney disease in the Global Burden of Disease Study 2017. Nature Reviews Nephrology, 15(4), 193-194. https://doi.org/10.1038/s41581-019-0120-0
Giordano, C., Karasik, O., King-Morris, K., & Asmar, A. (2015). Uric Acid as a Marker of Kidney Disease: Review of the Current Literature. Disease Markers, 2015, 382918. https://doi.org/10.1155/2015/382918
Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49(2), 359-367. https://doi.org/10.1016/j.molcel.2012.10.016
Hommos, M. S., Glassock, R. J., & Rule, A. D. (2017). Structural and Functional Changes in Human Kidneys with Healthy Aging. Journal of the American Society of Nephrology, 28(10), 2838-2844. https://doi.org/10.1681/asn.2017040421
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371-384. https://doi.org/10.1038/s41576-018-0004-3
Hosten, A. O. (1990). BUN and Creatinine. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations (3 ed., pp. 874-878). Butterworths. https://www.ncbi.nlm.nih.gov/books/NBK305/
Johnson, R. J., Lanaspa, M. A., & Gaucher, E. A. (2011). Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations. Seminars in Nephrology, 31(5), 394-399. https://doi.org/10.1016/j.semnephrol.2011.08.002
Jylhävä, J., Pedersen, N. L., & Hägg, S. (2017). Biological Age Predictors. EBioMedicine, 21, 29-36. https://doi.org/10.1016/j.ebiom.2017.03.046
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. (2013). KDIGO 2012 Clinical Practice Guideline for then Evaluation and Management of Chronic Kidney Disease. Kidney International Supplements, 3, 1-150.
Koenigsberg, S. H., Chang, C. J., Ish, J., Xu, Z., Kresovich, J. K., Lawrence, K. G., Kaufman, J. D., Sandler, D. P., Taylor, J. A., & White, A. J. (2023). Air pollution and epigenetic aging among Black and White women in the US. Environment International, 181, 108270. https://doi.org/10.1016/j.envint.2023.108270
Kuźma, Ł., Małyszko, J., Bachórzewska-Gajewska, H., Kralisz, P., & Dobrzycki, S. (2021). Exposure to air pollution and renal function. Scientific Reports, 11(1), 11419. https://doi.org/10.1038/s41598-021-91000-0
Lai, T. S., Hsu, C. C., Lin, M. H., Wu, V. C., & Chen, Y. M. (2022). Trends in the incidence and prevalence of end-stage kidney disease requiring dialysis in Taiwan: 2010-2018. Journal of the Formosan Medical Association, 121 Suppl 1, S5-S11. https://doi.org/10.1016/j.jfma.2021.12.013
Levey, A. S., Becker, C., & Inker, L. A. (2015). Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. The Journal of the American Medical Association, 313(8), 837-846. https://doi.org/10.1001/jama.2015.0602
Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., 3rd, Feldman, H. I., Kusek, J. W., Eggers, P., Van Lente, F., Greene, T., & Coresh, J. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604-612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10(4), 573-591. https://doi.org/10.18632/aging.101414
Lin, S. Y., Ju, S. W., Lin, C. L., Hsu, W. H., Lin, C. C., Ting, I. W., & Kao, C. H. (2020). Air pollutants and subsequent risk of chronic kidney disease and end-stage renal disease: A population-based cohort study. Environmental Pollution, 261, 114154. https://doi.org/10.1016/j.envpol.2020.114154
Lin, W. Y. (2023). Epigenetic clocks derived from western samples differentially reflect Taiwanese health outcomes. Frontiers in Genetics, 14, 1089819. https://doi.org/10.3389/fgene.2023.1089819
Liu, H., Zhang, X., Sun, Z., & Chen, Y. (2023). Ambient Fine Particulate Matter and Cancer: Current Evidence and Future Perspectives. Chemical Research in Toxicology, 36(2), 141-156. https://doi.org/10.1021/acs.chemrestox.2c00216
Liu, M., Li, X. C., Lu, L., Cao, Y., Sun, R. R., Chen, S., & Zhang, P. Y. (2014). Cardiovascular disease and its relationship with chronic kidney disease. European Review for Medical and Pharmacological Sciences, 18(19), 2918-2926.
Liyanage, T., Toyama, T., Hockham, C., Ninomiya, T., Perkovic, V., Woodward, M., Fukagawa, M., Matsushita, K., Praditpornsilpa, K., Hooi, L. S., Iseki, K., Lin, M. Y., Stirnadel-Farrant, H. A., Jha, V., & Jun, M. (2022). Prevalence of chronic kidney disease in Asia: a systematic review and analysis. BMJ Global Health, 7(1). https://doi.org/10.1136/bmjgh-2021-007525
Lo, Y. H., & Lin, W. Y. (2022). Cardiovascular health and four epigenetic clocks. Clinical Epigenetics, 14(1), 73. https://doi.org/10.1186/s13148-022-01295-7
Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World Journal of Nephrology, 4(1), 57-73. https://doi.org/10.5527/wjn.v4.i1.57
Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 11(2), 303-327. https://doi.org/10.18632/aging.101684
Matsushita, K., van der Velde, M., Astor, B. C., Woodward, M., Levey, A. S., de Jong, P. E., Coresh, J., & Gansevoort, R. T. (2010). Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet, 375(9731), 2073-2081. https://doi.org/10.1016/s0140-6736(10)60674-5
Matías-García, P. R., Ward-Caviness, C. K., Raffield, L. M., Gao, X., Zhang, Y., Wilson, R., Gào, X., Nano, J., Bostom, A., Colicino, E., Correa, A., Coull, B., Eaton, C., Hou, L., Just, A. C., Kunze, S., Lange, L., Lange, E., Lin, X., . . . Waldenberger, M. (2021). DNAm-based signatures of accelerated aging and mortality in blood are associated with low renal function. Clinical Epigenetics, 13(1), 121. https://doi.org/10.1186/s13148-021-01082-w
McCartney, D. L., Min, J. L., Richmond, R. C., Lu, A. T., Sobczyk, M. K., Davies, G., Broer, L., Guo, X., Jeong, A., Jung, J., Kasela, S., Katrinli, S., Kuo, P. L., Matias-Garcia, P. R., Mishra, P. P., Nygaard, M., Palviainen, T., Patki, A., Raffield, L. M., . . . Marioni, R. E. (2021). Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biology, 22(1), 194. https://doi.org/10.1186/s13059-021-02398-9
McCartney, D. L., Stevenson, A. J., Walker, R. M., Gibson, J., Morris, S. W., Campbell, A., Murray, A. D., Whalley, H. C., Porteous, D. J., McIntosh, A. M., Evans, K. L., Deary, I. J., & Marioni, R. E. (2018). Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer's disease. Alzheimer's & Dementia (Amsterdam, Netherlands), 10, 429-437. https://doi.org/10.1016/j.dadm.2018.05.006
Nwanaji-Enwerem, J. C., Colicino, E., Trevisi, L., Kloog, I., Just, A. C., Shen, J., Brennan, K., Dereix, A., Hou, L., Vokonas, P., Schwartz, J., & Baccarelli, A. A. (2016). Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environmental Epigenetics, 2(2), dvw006. https://doi.org/10.1093/eep/dvw006
Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., & Boks, M. P. (2021). A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Research Reviews, 69, 101348. https://doi.org/10.1016/j.arr.2021.101348
Oh, J., Ye, S., Kang, D. H., & Ha, E. (2022). Association between exposure to fine particulate matter and kidney function: Results from the Korea National Health and Nutrition Examination Survey. Environmental Research, 212(Pt A), 113080. https://doi.org/10.1016/j.envres.2022.113080
Ortiz, A., Mattace-Raso, F., Soler, M. J., & Fouque, D. (2022). Ageing meets kidney disease. Clinical Kidney Journal, 15(10), 1793-1796. https://doi.org/10.1093/ckj/sfac151
Pan, Y., Sun, X., Huang, Z., Zhang, R., Li, C., Anderson, A. H., Lash, J. P., & Kelly, T. N. (2023). Effects of epigenetic age acceleration on kidney function: a Mendelian randomization study. Clinical Epigenetics, 15(1), 61. https://doi.org/10.1186/s13148-023-01476-y
Perna, L., Zhang, Y., Mons, U., Holleczek, B., Saum, K. U., & Brenner, H. (2016). Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clinical Epigenetics, 8, 64. https://doi.org/10.1186/s13148-016-0228-z
Provenzano, M., Coppolino, G., Faga, T., Garofalo, C., Serra, R., & Andreucci, M. (2019). Epidemiology of cardiovascular risk in chronic kidney disease patients: the real silent killer. Reviews in Cardiovascular Medicine, 20(4), 209-220. https://doi.org/10.31083/j.rcm.2019.04.548
Quach, A., Levine, M. E., Tanaka, T., Lu, A. T., Chen, B. H., Ferrucci, L., Ritz, B., Bandinelli, S., Neuhouser, M. L., Beasley, J. M., Snetselaar, L., Wallace, R. B., Tsao, P. S., Absher, D., Assimes, T. L., Stewart, J. D., Li, Y., Hou, L., Baccarelli, A. A., . . . Horvath, S. (2017). Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY), 9(2), 419-446. https://doi.org/10.18632/aging.101168
Rasking, L., Vanbrabant, K., Bové, H., Plusquin, M., De Vusser, K., Roels, H. A., & Nawrot, T. S. (2022). Adverse Effects of fine particulate matter on human kidney functioning: a systematic review. Environmental Health, 21(1), 24. https://doi.org/10.1186/s12940-021-00827-7
Roberts, J. D., Vittinghoff, E., Lu, A. T., Alonso, A., Wang, B., Sitlani, C. M., Mohammadi-Shemirani, P., Fornage, M., Kornej, J., Brody, J. A., Arking, D. E., Lin, H., Heckbert, S. R., Prokic, I., Ghanbari, M., Skanes, A. C., Bartz, T. M., Perez, M. V., Taylor, K. D., . . . Marcus, G. M. (2021). Epigenetic Age and the Risk of Incident Atrial Fibrillation. Circulation: Genomic and Precision Medicine, 144(24), 1899-1911. https://doi.org/10.1161/circulationaha.121.056456
Rowland, J., Akbarov, A., Maan, A., Eales, J., Dormer, J., & Tomaszewski, M. (2018). Tick-Tock Chimes the Kidney Clock - from Biology of Renal Ageing to Clinical Applications. Kidney & Blood Pressure Research, 43(1), 55-67. https://doi.org/10.1159/000486907
Rule, A. D., Amer, H., Cornell, L. D., Taler, S. J., Cosio, F. G., Kremers, W. K., Textor, S. C., & Stegall, M. D. (2010). The association between age and nephrosclerosis on renal biopsy among healthy adults. Annals of Internal Medicine, 152(9), 561-567. https://doi.org/10.7326/0003-4819-152-9-201005040-00006
Seals, D. R., Justice, J. N., & LaRocca, T. J. (2016). Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. The Journal of Physiology, 594(8), 2001-2024. https://doi.org/10.1113/jphysiol.2014.282665
Sundström, J., Bodegard, J., Bollmann, A., Vervloet, M. G., Mark, P. B., Karasik, A., Taveira-Gomes, T., Botana, M., Birkeland, K. I., Thuresson, M., Jäger, L., Sood, M. M., VanPottelbergh, G., Tangri, N., & CaReMe CKD Investigators. (2022). Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: The CaReMe CKD study. The Lancet Regional Health. Europe, 20, 100438. https://doi.org/10.1016/j.lanepe.2022.100438
Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). mediation: R Package for Causal Mediation Analysis. Journal of Statistical Software, 59(5), 1 - 38. https://doi.org/10.18637/jss.v059.i05
Triche, T. J., Jr., Weisenberger, D. J., Van Den Berg, D., Laird, P. W., & Siegmund, K. D. (2013). Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Research, 41(7), e90. https://doi.org/10.1093/nar/gkt090
Uchehara, B., Coulter Kwee, L., Regan, J., Chatterjee, R., Eckstrand, J., Swope, S., Gold, G., Schaack, T., Douglas, P., Mettu, P., Haddad, F., Shore, S., Hernandez, A., Mahaffey, K. W., Pagidipati, N., & Shah, S. H. (2023). Accelerated Epigenetic Aging Is Associated With Multiple Cardiometabolic, Hematologic, and Renal Abnormalities: A Project Baseline Health Substudy. Circulation: Genomic and Precision Medicine, 16(3), 216-223. https://doi.org/10.1161/circgen.122.003772
Vart, P., & Grams, M. E. (2016). Measuring and Assessing Kidney Function. Seminars in Nephrology, 36(4), 262-272. https://doi.org/10.1016/j.semnephrol.2016.05.003
Warnock, D. G., Muntner, P., McCullough, P. A., Zhang, X., McClure, L. A., Zakai, N., Cushman, M., Newsome, B. B., Kewalramani, R., Steffes, M. W., Howard, G., & McClellan, W. M. (2010). Kidney function, albuminuria, and all-cause mortality in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study. American Journal of Kidney Diseases, 56(5), 861-871. https://doi.org/10.1053/j.ajkd.2010.05.017
Wei, S. Y., Pan, S. Y., Li, B., Chen, Y. M., & Lin, S. L. (2020). Rejuvenation: Turning back the clock of aging kidney. Journal of the Formosan Medical Association 119(5), 898-906. https://doi.org/10.1016/j.jfma.2019.05.020
White, A. J., Kresovich, J. K., Keller, J. P., Xu, Z., Kaufman, J. D., Weinberg, C. R., Taylor, J. A., & Sandler, D. P. (2019). Air pollution, particulate matter composition and methylation-based biologic age. Environment International, 132, 105071. https://doi.org/10.1016/j.envint.2019.105071
Wong, P. Y., Lee, H. Y., Chen, Y. C., Zeng, Y. T., Chern, Y. R., Chen, N. T., Candice Lung, S. C., Su, H. J., & Wu, C. D. (2021). Using a land use regression model with machine learning to estimate ground level PM(2.5). Environmental Pollution, 277, 116846. https://doi.org/10.1016/j.envpol.2021.116846
World Health Organization. (2018). Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. World Health Organization.
Wu, C. S., Hsu, L. Y., Shen, C. Y., Chen, W. J., Lin, M. C., Fan, C. C., & Wang, S. H. (2024). Comparison of Demographic and Clinical Characteristics of Taiwan Biobank Participants with Nonparticipants. Journal of Epidemiology. https://doi.org/10.2188/jea.JE20240297
Wu, H., Eckhardt, C. M., & Baccarelli, A. A. (2023). Molecular mechanisms of environmental exposures and human disease. Nature Reviews. Genetics, 24(5), 332-344. https://doi.org/10.1038/s41576-022-00569-3
Wuttke, M., Li, Y., Li, M., Sieber, K. B., Feitosa, M. F., Gorski, M., Tin, A., Wang, L., Chu, A. Y., Hoppmann, A., Kirsten, H., Giri, A., Chai, J. F., Sveinbjornsson, G., Tayo, B. O., Nutile, T., Fuchsberger, C., Marten, J., Cocca, M., . . . Pattaro, C. (2019). A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 51(6), 957-972. https://doi.org/10.1038/s41588-019-0407-x
Xu, X., Nie, S., Ding, H., & Hou, F. F. (2018). Environmental pollution and kidney diseases. Nature Reviews Nephrology, 14(5), 313-324. https://doi.org/10.1038/nrneph.2018.11
Yang, L., Zhang, Y., Qi, W., Zhao, T., Zhang, L., Zhou, L., & Ye, L. (2022). Adverse effects of PM(2.5) on cardiovascular diseases. Reviews on Environmental Health, 37(1), 71-80. https://doi.org/10.1515/reveh-2020-0155
Ye, J. J., Wang, S. S., Fang, Y., Zhang, X. J., & Hu, C. Y. (2021). Ambient air pollution exposure and risk of chronic kidney disease: A systematic review of the literature and meta-analysis. Environmental Research, 195, 110867. https://doi.org/10.1016/j.envres.2021.110867
Yusipov, I., Kondakova, E., Kalyakulina, A., Krivonosov, M., Lobanova, N., Bacalini, M. G., Franceschi, C., Vedunova, M., & Ivanchenko, M. (2022). Accelerated epigenetic aging and inflammatory/immunological profile (ipAGE) in patients with chronic kidney disease. Geroscience, 44(2), 817-834. https://doi.org/10.1007/s11357-022-00540-4
許志成、吳麥斯、黃尚志、林裕峯、許永和、邱怡文(2022)。2021台灣腎病年報。國家衛生研究院。
劉介宇、洪永泰、莊義利、陳怡如、翁文舜、劉季鑫、梁賡義(2006)。台灣地區鄉鎮市區發展類型應用於大型健康調查抽樣設計之研究。健康管理學刊,4(1), 1-22。 https://doi.org/10.29805/jhm.200606.0001
校內:2028-01-31公開