| 研究生: |
杜書翰 Du, Shu-Han |
|---|---|
| 論文名稱: |
利用線上還原雙硫鍵結合層析質譜完整蛋白及酵素消化方法解析CyP3重組蛋白中雙硫鍵及自由硫醇的狀態 Resolving Disulfide Linkages and Free Thiol Sites of Recombinant Cyclophilin 3 (rCyP3) via Intact Protein Measurement and on-Line UV-induced Pre-column Reduction Coupled with LC-MS |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 陰道毛滴蟲親環蛋白 、紫外光 、半胱胺酸 、自由硫醇 、雙硫鍵之鍵結 |
| 外文關鍵詞: | Trichomonas vaginalis cyclophilin(r-TvCyP), Ultraviolate(UV), Cysteine(C), free thiol, disulfide linkages |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陰道毛滴蟲(Trichomonas vaginalis)是導致性疾病中的一種單細胞,其中的基因蛋白,親環蛋白(cyclophilin),此是陰道毛滴蟲的感染主要因子,一個蛋白的結構涉入蛋白的功能以及活性,為了瞭解病理機致我們要分析Trichomonas vaginalis cyclophilin的結構,結構又與雙硫鍵(disulfide bonds)有極大關係。
利用實驗室建立的254nm紫外光(Ultraviolate UV)流動槽系統結合液相層析Liquid Chromatography (LC)來照射醇類與丙酮溶劑,產生對雙硫鍵有還原作用的自由基,由此再運用質譜儀 Mass Spectrometry (MS)來解析蛋白質的雙硫鍵。
用 UV 系統來分析陰道毛滴蟲細胞裡選殖出來的重組基因蛋白Recombinant Trichomonas vaginalis cyclophilin (r-TvCyP),r-TvCyP1與 r-TvCyP2的雙硫鍵(disulfide linkages)已經被分析出來,兩者具有相同序列的雙硫鍵之鍵結(disulfide linkages),C153-C164及 C41-C169。
對 r-TvCyP3進行雙硫鍵分析,在 intact 蛋白部分,發現 r-TvCyP3具有高度的氧化及306 Da的加合物(adduct),利用 UV 系統及蛋白變性態的實驗推斷出 adduct 就是Glutathione。從照光系統知道 Refold 的r-TvCyP3的9個半胱胺酸 (Cysteine, C)中,C39及 C41照光後還原的比例(UV reduced free Cysteine%)為100%,表示這兩個 Cysteine存在於 disulfide linkages 中,且 C39與 C41是相連在一起;C59在照光後還原的比例高達96%,表示 C59大部分存在於 disulfide linkages中;C81是 Glutathione 的主要位點,照光後有55%(free Cysteine%)的加合物,而其在照光後還原的比例有25%,表示 C81有部分存在於 disulfide linkages中;C127在照光前後都有高比例的氧化(free Cysteine%),且其是 r-TvCyP3一個氧修飾的主要位點,表示其本身的硫醇(thiol)是 free thiol,C135則是 Glutathione 的第二位點,也具有氧化的比例(free Cysteine%),其 thiol 也是 free thiol,兩者都可以從 r-TvCyp1與 r-TvCyp2的 free thiol 證實;C153、C164與 C169在照光後還原的比例為100%,表示這3個 Cysteine是存在於 disulfide linkages 中;利用照光前的層析圖找到 disulfide linkages的組合(disulfide bonds mapping),Refold 與 Reconstitution 的 r-TvCyp3皆是以 C153-C164/ C81-C169與 C164-C169這三種disulfide linkages,其中 C153-C164與 C164-C169也存在於 r-TvCyP1。
Trichomonas vaginalis cyclophilin is related to the sexual disease, if we know its structure maybe can realize the pathological mechanism.
To analyze the recombinant Trichomonas vaginalis cyclophilin (r-TvCyP) is our purpose, r-TvCyP1 and r-TvCyP2 have been published by this way, the rest of r-TvCyP protein is r-TvCyP3 we need to analyze and accomplish r-TvCyP series.
Using Ultraviolate (UV) reduction system we established by a Liquid Chromatography (LC) connected with flow cell by fuse silica tube in front of MASS (MS) to detect the reduction of the disulfide bonds. When acetone is under 254 nm UV exposed, it will generate acetyl radicals to attack alcohol, and then secondary hydroxyalkyl radicals resulting from alcohol solvent are responsible for cleaving the disulfide bonds.
For analysis of r-TvCyP3, in intact Protein, we find that there are oxidation and 306 adduct on r-TvCyP3, we deduce 306 adduct is Glutathione (GSH) by UV reduction and denatured digestion. In data analysis, we know totally 9 Cysteine (C) in r-TvCyP3, C39 and C41 has 100% UV reduced free Cysteine% after UV reduction, both are connected with intra disulfide bonds ; C59 has arrived 96.5% of UV reduced free Cysteine% after UV reduction, it means C59 exists in disulfide linkages before UV reduction; C81 is the main site of Glutathione, has around 55% (free Cysteine%) adduct, but it also has 25% of UV reduced free Cysteine% after UV reduction, means it also has a quarter existing in disulfide linkages ; Peptide contained C127 and C135 have high oxidative percentage(free Cysteine%) from their free thiol which can be verified by r-TvCyP1 and r-TvCyP2. Furthermore, C135 also is the second site of Glutathione ; C153, C164 and C169 have 100% UV reduced free Cysteine% after UV reduction, it means C153, C164 and C169 exist in disulfide linkages before UV reduction. The disulfide linkages of Refold and Reconstitution r-TvCyp3 are C153-C164/ C81-C169 and C164-C169, in addition, C153-C164 and C164-C169 also exsit in r-TvCyP1.
1. Kuo, C.-M.; Wei, S.-Y.; Du, S.-H.; Lin, J.-L.; Chu, C.-H.; Chen, C.-H.; Tai, J.-H.; Chen, S.-H., Comprehensive Workflow for Mapping Disulfide Linkages Including Free Thiols and Error Checking by On-Line UV-Induced Precolumn Reduction and Spiked Control. Analytical Chemistry 2021, 93 (3), 1544-1552.
2. Adhikari, S.; Yang, X.; Xia, Y., Acetone/Isopropanol Photoinitiating System Enables Tunable Disulfide Reduction and Disulfide Mapping via Tandem Mass Spectrometry. Analytical Chemistry 2018, 90 (21), 13036-13043.
3. Oka, O. B. V.; Bulleid, N. J., Forming disulfides in the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013, 1833 (11), 2425-2429.
4. Trivedi, M. V.; Laurence, J. S.; Siahaan, T. J., The role of thiols and disulfides on protein stability. Curr Protein Pept Sci 2009, 10 (6), 614-625.
5. Poppe, L.; Hui, J. O.; Ligutti, J.; Murray, J. K.; Schnier, P. D., PADLOC: A Powerful Tool to Assign Disulfide Bond Connectivities in Peptides and Proteins by NMR Spectroscopy. Analytical Chemistry 2012, 84 (1), 262-266.
6. Schmidt, B.; Ho, L.; Hogg, P. J., Allosteric Disulfide Bonds. Biochemistry 2006, 45 (24), 7429-7433.
7. Lakbub, J. C.; Shipman, J. T.; Desaire, H., Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal Bioanal Chem 2018, 410 (10), 2467-2484.
8. Liu-Shin, L. P.-Y.; Fung, A.; Malhotra, A.; Ratnaswamy, G., Evidence of disulfide bond scrambling during production of an antibody-drug conjugate. MAbs 2018, 10 (8), 1190-1199.
9. Yang, M.; Dutta, C.; Tiwari, A., Disulfide-Bond Scrambling Promotes Amorphous Aggregates in Lysozyme and Bovine Serum Albumin. The Journal of Physical Chemistry B 2015, 119 (10), 3969-3981.
10. Shaw, J. B.; Liu, W.; Vasil′ev, Y. V.; Bracken, C. C.; Malhan, N.; Guthals, A.; Beckman, J. S.; Voinov, V. G., Direct Determination of Antibody Chain Pairing by Top-down and Middle-down Mass Spectrometry Using Electron Capture Dissociation and Ultraviolet Photodissociation. Analytical Chemistry 2020, 92 (1), 766-773.
11. Wu, S.-L.; Jiang, H.; Lu, Q.; Dai, S.; Hancock, W. S.; Karger, B. L., Mass Spectrometric Determination of Disulfide Linkages in Recombinant Therapeutic Proteins Using Online LC−MS with Electron-Transfer Dissociation. Analytical Chemistry 2009, 81 (1), 112-122.
12. Fung, Y. M. E.; Kjeldsen, F.; Silivra, O. A.; Chan, T. W. D.; Zubarev, R. A., Facile Disulfide Bond Cleavage in Gaseous Peptide and Protein Cations by Ultraviolet Photodissociation at 157 nm. Angewandte Chemie International Edition 2005, 44 (39), 6399-6403.
13. Agarwal, A.; Diedrich, J. K.; Julian, R. R., Direct Elucidation of Disulfide Bond Partners Using Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry 2011, 83 (17), 6455-6458.
14. Quick, M. M.; Crittenden, C. M.; Rosenberg, J. A.; Brodbelt, J. S., Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Analytical Chemistry 2018, 90 (14), 8523-8530.
15. Ledvina, A. R.; Lee, M. V.; McAlister, G. C.; Westphall, M. S.; Coon, J. J., Infrared Multiphoton Dissociation for Quantitative Shotgun Proteomics. Analytical Chemistry 2012, 84 (10), 4513-4519.
16. Cramer, C. N.; Haselmann, K. F.; Olsen, J. V.; Nielsen, P. K., Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry. Analytical Chemistry 2016, 88 (3), 1585-1592.
17. Switzar, L.; Nicolardi, S.; Rutten, J. W.; Oberstein, S. A. J. L.; Aartsma-Rus, A.; van der Burgt, Y. E. M., In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2016, 27 (1), 50-58.
18. Cramer, C. N.; Kelstrup, C. D.; Olsen, J. V.; Haselmann, K. F.; Nielsen, P. K., Complete Mapping of Complex Disulfide Patterns with Closely-Spaced Cysteines by In-Source Reduction and Data-Dependent Mass Spectrometry. Analytical Chemistry 2017, 89 (11), 5949-5957.
19. Cramer, C. N.; Kelstrup, C. D.; Olsen, J. V.; Haselmann, K. F.; Nielsen, P. K., Generic Workflow for Mapping of Complex Disulfide Bonds Using In-Source Reduction and Extracted Ion Chromatograms from Data-Dependent Mass Spectrometry. Analytical Chemistry 2018, 90 (13), 8202-8210.
20. Martin, T.; Lou, Y.; Chou, C.; Wei, S.-y.; Sadotra, S.; Cho, C.-C.; Lin, M.-H.; Tai, J.; Hsu, C.-H.; Chen, C., Structural basis of interaction between dimeric cyclophilin 1 and Myb1 transcription factor in Trichomonas vaginalis. Scientific Reports 2018, 8.
21. Chu, C.-H.; Huang, Y.-H.; Liu, H.-W.; Hsu, H.-M.; Tai, J.-H., Membrane localization of a Myb3 transcription factor regulated by a TvCyP1 cyclophilin in the parasitic protozoan Trichomonas vaginalis. The FEBS Journal 2018, 285 (5), 929-946.
22. Hsu, H.-M.; Huang, Y.-H.; Aryal, S.; Liu, H.-W.; Chen, C.; Chen, S.-H.; Chu, C.-H.; Tai, J.-H., Endomembrane Protein Trafficking Regulated by a TvCyP2 Cyclophilin in the Protozoan Parasite, Trichomonas vaginalis. Scientific Reports 2020, 10 (1), 1275.
23. Hwang, C.; Sinskey Anthony, J.; Lodish Harvey, F., Oxidized Redox State of Glutathione in the Endoplasmic Reticulum. Science 1992, 257 (5076), 1496-1502.
校內:2026-10-01公開