| 研究生: |
張遠帆 Chang, Yuan-Fan |
|---|---|
| 論文名稱: |
具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道 Contactless EV Power Track with Overlapping-Circle Inductive Coupled Structure Array |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 非接觸式電動車供電軌道 、疊圈型感應耦合結構陣列 、分段激發控制 |
| 外文關鍵詞: | Contactless EV power track, Overlapping-circle inductive coupled structure array, Segment excited control |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在應用非接觸式電能傳輸技術,研製具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道。文中為增進電動車拾取電能之穩定度,並防止供電軌道同時開啟造成電能浪費,提出具均勻磁場分佈之疊圈型感應耦合結構陣列,將整體供電軌道以軌道陣列拼裝而成,利用軌道陣列分段激發控制提升供電軌道使用效率。透過Maxwell磁場模擬軟體之模擬結果進行分析,設計具有高磁場均勻度之疊圈型感應耦合結構及分段激發控制電路感測線圈,並藉由理論分析諧振架構,提升供電軌道傳輸能力及效率。最後經由實驗量測結果得知,非接觸式電動車供電軌道之耦合結構於間距10 cm下,整體系統最大輸出功率為4.89 kW,且最高電能傳輸效率約84.17%。
This thesis is aimed to utilize the technology of contactless power transmission for implementing contactless EV power track with overlapping- circle inductive coupled structure array. First, to improving the stability of picking up electrical energy in case of moving EV, we proposed overlapping-circle inductive coupled structure array with a uniform magnetic field distribution. The power track consists of many arrays and utilizes segment excited control for preventing the large power loss. According to the simulation results of the simulation software of magnetic field, this thesis designs overlapping-circle inductive coupled structure with a uniform magnetic field distribution and the detection coils of segment excited control system. Theory and analysis of the resonant circuit are utilized for improving the power transmission ability and efficiency. According to the experimental result, the maximum power output of overall systems is 4.89 kW and the highest power transmission efficiency is about 84.17% over 10 cm airgap.
[1] D. J. Thrimawithana and U. K. Madawala, “A three-phase bi-directional IPT system for contactless charging of electric vehicles,” in Proc. IEEE ISIE’11, 2011, pp. 1957–1962.
[2] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC’97, 1997, pp. 841–847.
[3] J. G. Hayes, “Battery charing systems for electric vehicles,” in Proc. IEEE Colloq. Electric Vehicles-A Technology Roadmap for the Future, 1998, pp. 4/1–4/8.
[4] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. IEEE IPEC’10, 2010, pp. 2930–2934.
[5] J. A. Russer, M. Dionigi, M. Mongiardo, and P. Russer, “A bidirectional moving field inductive power transfer system for electric vehicles,”in Proc. IEEE Telecommunication in Modern Satellite, Cable and Broadcasting Services, 2013, pp. 17–20.
[6] O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, Cliff. P. White, and L. E. Seiber, “A novel wireless power transfer for in-motion EV/PHEV charging,”in Proc. IEEE APEC’13, 2013, pp. 3073–3080.
[7] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[8] 童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[9] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯繞製式編織型陣列區塊感應耦合系統之研製,國立成功大學電機工程學系碩士論文
,2010年。
[10] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。
[11] J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617–622, May 2008.
[12] P. Meyer, P. Germano, and Y. Perriard, “Modelling and design of a contactless energy transfer system for a notebook battery charger,” in Proc. IEEE ICEM’10, 2010, pp. 1-6.
[13] W. X. Zhong, Xun Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136–4144, Sep. 2011.
[14] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620–627, May 2005.
[15] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980–2993, Jun. 2012.
[16] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[17] 林哲立,植入式神經電刺激器之非接觸式射頻饋電電路研製,國立成功大學電機工程學系碩士論文,2013年。
[18] 李成斌,具新型三相感應耦合結構之電動車用非接觸式充電槳系統
,國立成功大學電機工程學系碩士論文,2013年。
[19] 趙善任,應用新型三相感應耦合結構於非接觸式電動載具充電平台之研究,國立成功大學電機工程學系碩士論文,2013年。
[20] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. IEEE PCCON’02, 2002, pp. 227–232.
[21] M. Mochizuki, A. Asada, T. Ura, Z. Yoshida, R. Lwase, T. Goto, M. Fujita, M. Sato, O. L. Colombo, T. Tanaka, Z. Hong, and K. Nagahashi, “Development of seafloor geodetic observation system based on AUV and submarine cable technologies,” in Proc. IEEE Oceans’10, 2010, pp. 1–4.
[22] “IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
[23] “IPT charge for electric vehicles,” Daifuku., Japan, 1108-06CP-E, 2011.
[24] “非接觸供電,” AMIDOF., Taiwan, 2005.
[25] Schoneberger, “Primove contactless and catenary-free operation,” Bombardier Inc., 10832/SYS/09- 2010/en, Canada, 2010.
[26] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE J. Emerging Select. Topics Power Electron., vol. 1, no. 1, pp. 28–41, Mar. 2013.
[27] G. A. Covic and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, Jan. 2013.
[28] J. T. Boys, N. A. Keeling, and G. A. Covic, “A unity-power-factor IPT pickup for high-power applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 744–751, Feb. 2010.
[29] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148–157, 2004.
[30] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. IEEE Power Syst. Technol. Conf., 2000, pp. 85–90.
[31] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333–335, Jan. 2007.
[32] H. L. Li, A. P. Hu, G. A. Covic, and C. S. Tang, “Optimal coupling condition of IPT system for achieving maximum power transfer,” Electron. Lett., vol. 45, no. 1, pp. 76–77, Jan. 2009.
[33] M. Budhui, J. T. Boys, G. A. Covic, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318–328, 2013.
[34] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA’07, 2007, pp. 68–73.
[35] C. T. Rim, “The development and deployment of on-line electric vehicles (OLEV),” in Proc. IEEE ECCE’13, 2013, pp. 1–58.
[36] S. W. Lee, J. Huh, C. B. Park, N. S. Choi, G. H. Cho, and C. T. Rim, “On-line electric vehicle using inductive power transfer system,”in Proc. IEEE ECCE’10, 2010, pp. 1598–1601.
[37] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[38] Xun Liu and S. Y. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202–2210, Nov. 2007.
[39] X. Liu and S. Y. R. Hui, “Optimal design of a hybrid winding structure for planar contactless battery charging platform,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 455–463, Jan. 2008.
[40] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620–627, May 2005.
[41] X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC’08, 2008, pp. 645–650.
[42] Y. Su, Xun Liu, C. K. Lee, and S. Y. Hui, “On the relationship of quality factor and hollow winding structure of coreless printed spiral winding (CPSW) inductor,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3050–3056, Jun. 2012.
[43] H. Wakiwaka, S. Yanase, and M. Nishizawa, “Characteristics of meander coil impedance with opened scale coil for linear sensor,” in Proc. IEEE IECON’96, 1996, pp. 487–492.
[44] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, T. Watanabe, and T. Satoh, “A new meander type contactless power transmission system-active excitation with a characteristics of coil shape,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2069–2071, 1998.
[45] G. Nagendra, L. Chen, G. A. Covic, and J. Boys, “Detection of EVs on IPT highways,” in Proc. IEEE APEC’14, 2014, pp. 1604-1611.
[46] M. Budhui, J. T. Boys, and G. A. Covic, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096–3108, Nov. 2011.
[47] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832–5841, Dec. 2013.
[48] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, 1975.
[49] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[50] TLP250 Data Sheet, TOSHIBA Inc., 2004.