簡易檢索 / 詳目顯示

研究生: 莊閔皓
Jhuang, Min-Hao
論文名稱: 六軸工業用機械手臂之系統鑑別與順應控制研究
Study on System Identification and Compliance Control of 6-axis Industrial Manipulator
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 動態系統模型系統建模滑動模式控制適應性控制回授線性化計算力矩控制干擾量觀測器順應控制
外文關鍵詞: 6-axis Manipulator, System Identification, Feedback Linearization, Computed Torque, Adaptive Control, Sliding Mode, Disturbance Observer, Compliance Control, Power Assistant
相關次數: 點閱:263下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,投入機械手臂研究的學者越來越多,相對的,機械手臂控制的研究也越來越受重視,傳統作法是將伺服馬達驅動器設定為位置模式(Position Mode)來控制機械手臂的運動,而該方式已經無法應付未來更多的應用場合,解決方法是將伺服馬達驅動器設定為轉矩模式(Torque Mode)來控制機械手臂的運動,然而要使用轉矩模式來控制機械手臂必須掌握機械手臂的動態模型。本論文根據機械手臂的結構建立機械手臂的動態模型,並設計實驗去求得動態模型的系統參數,並以各種基於模型之位置控制方法來進行循跡控制實驗以驗證動態模型的精確度。實驗結果顯示使用基於模型之位置控制方法所產生的循跡誤差很小,可推論本論文所使用的動態系統建模方法是有效的。另外隨著工廠生產型態的改變,人與機械手臂將會在同一個場域協同工作的需求與日俱增,但是當機械手臂意外撞擊發生時,可能會造成人員或是財產的重大損失。解決方法之一是在機械手臂上安裝感測器以偵測意外撞擊的發生,但是安裝感測器所費不貲,且後續所需的維修與保養更是花錢。本論文實作了兩種無感測器式(Sensorless)的干擾量觀測器(Disturbance Observer)來偵測意外撞擊,並實作了數種意外碰撞發生後的安全防護策略,可以根據工廠生產的實際情形去選擇要採取何種策略。機械手臂傳統上是透過教導器(Teach Pendant)來規劃其工作路徑,可是這樣的作法對於現場作業人員來說並不容易,因為還要花時間去學習如何操作教導器介面,為解決此一問題,有越來越多學者或研究機構在思考如何開發更容易上手的直覺式教導器,可直接用手拉著機械手臂去規劃工作路徑。本論文以干擾量觀測器為基礎,針對直覺式教導提供了電助力教導以及順應控制教導這兩種解決方案,給予機械手臂順應性(Compliance),讓使用者能夠用手輕易的引導機械手臂於工作軌跡上移動。

    In recent years, more and more researchers are investigating in the fields related to robot manipulators. As a result, research topics concerning robot manipulator control deserve more investigation. Traditionally, the servomotors used to control the motion of the robot manipulator are set to the position mode. However, this approach was not suitable for many applications used in future. One of the solutions to the aforementioned problem is that the servomotors used to control the motion of the robot manipulator are set to the torque mode. In order to use the torque mode, the dynamic model of the robot manipulator is essential. In this thesis, the dynamic model of robot manipulator is derived according to the robot’s physical structure used in the experiment, and the parameters of the dynamic model are identified from designed experiments. After identifying the parameters of the dynamic model, several tracking experiments using different existing model-based control laws are conducted to verify the effectiveness of the identified dynamic model. Experimental results indicate that the tracking error is small so as to verify that the system identification procedure of the robot manipulator is effective. Due to the change in modern manufacturing type, the need that the workers and robot manipulators cooperate together to complete tasks keeps increasing. An accident collision on the robot manipulator may cause damages on users or robot manipulator itself. A common solution is to equip sensors on robot manipulators in order to detect the accident collision, though the sensors are usually expensive. This thesis has investigated two types of disturbance observers for detecting the accident collision, and several strategies for avoiding damages when collisions happen. A suitable strategy can be selected according to the type of products a factory manufactured. Traditionally, the manufacturers of the robot manipulators provide an interface called the teach pendant for user to control the robot manipulator and plan the motion trajectory. However, in many occasions the teach pendant is not an easy solution for human operators since it may take a lot of time to learn how to use the teach pendant. In view of this, many researchers develop the intuitive robot guider which allows users/operators to grasp a robot manipulator’s end effector to guide/pan a trajectory for the end effector to follow. By employing the disturbance observer, this paper provides solutions to the intuitive guider by a power assisting system and compliance control. The intuitive guider developed in this thesis can provide the robot manipulator with “compliance” and allow users to grasp the end effector to move it freely.

    中文摘要 I EXTENDED ABSTRACT III 誌謝 XIX 目錄 XXII 表目錄 XXIV 圖目錄 XXV 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 論文架構 6 第二章 機械手臂運動學與動力學簡介 7 2.1 順向運動學 7 2.2 賈克比矩陣 11 2.3 機械手臂動態方程式 13 第三章 機械手臂動態系統鑑別 18 3.1 機械手臂動態方程式分解與系統參數鑑別 18 3.2 實驗軌跡設計 20 3.3 軌跡速度與加速度估測 20 3.4 馬達位置模式 22 第四章 機械手臂控制架構 23 4.1 即時速度估測 23 4.2 回授控制 26 4.3 回授線性化控制 28 4.4 計算力矩控制 29 4.5 適應性控制 30 4.6 滑動模式控制 33 第五章 干擾量觀測器與直覺式教導器設計 35 5.1 閉迴路干擾量觀測器架構 35 5.2 基於動量之開迴路干擾量觀測器架構 36 5.3 碰撞後安全反應機制 37 5.4 電助力教導 38 5.5 順應控制教導 39 第六章 實驗設備與實驗結果 45 6.1 實驗系統架構 45 6.2 點對點運動命令規劃 50 6.3 實驗一 完整系統參數鑑別 57 6.4 實驗二 簡化的系統參數鑑別 63 6.5 實驗三 循跡控制 67 6.6 實驗四 干擾量觀測 92 6.7 實驗五 碰撞後安全反應實驗 94 6.8 實驗六 電助力實驗 97 6.9 實驗七 順應控制 99 第七章 結論與建議 101 7.1 結論 101 7.2 未來展望與建議 102 參考文獻 103

    [1] Available: https://qph.is.quoracdn.net/main-qimg-ad12651aa07cb38b182baad0ecbfaafc?convert_to_webp=true
    [2] M. Gautier, W. Khalil, and P. P. Restrepo, “Identification of the dynamic parameters of a closed loop robot,” in Proceedings of the IEEE International Conference on Robotics and Automation, 1995, pp. 3045-3050.
    [3] M. Gautier, “Dynamic identification of robots with power model,” in Proceedings of the IEEE International Conference on Robotics and Automation, 1997, pp. 1922-1927.
    [4] W. Wu, S. Zhu, X. Wang, and H. Liu, “Closed-loop dynamic parameter identification of robot manipulators using modified fourier series,” International Journal of Advanced Robotic Systems, vol. 9, 2012.
    [5] M. Gautier, A. Janot, and P. O. Vandanjon, “A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics,” IEEE Transactions on Control Systems Technology, vol. 21, pp. 428-444, 2013.
    [6] J. Swevers, C. Ganseman, D. B. Tukel, J. d. Schutter, and H. V. Brussel, “Optimal robot excitation and identification,” IEEE Transactions on Robotics and Automation, vol. 13, pp. 730-740, 1997.
    [7] D. Kostic, J. Bram de, M. Steinbuch, and R. Hensen, “Modeling and identification for high-performance robot control: an RRR-robotic arm case study,” IEEE Transactions on Control Systems Technology, vol. 12, pp. 904-919, 2004.
    [8] M. Gautier and W. Khalil, “Direct calculation of minimum set of inertial parameters of serial robots,” IEEE Transaction on Robotics and Automation, vol. 6, pp. 368-373, 1990.
    [9] M. Gautier and P. Poignet, “Extended Kalman filtering and weighted least squares dynamic identification of robot,” Control Engineering Practice, vol. 9, pp. 1361-1372, 2001.
    [10] D. Kubus, T. Kroger, and F. M. Wahl, “On-line estimation of inertial parameters using a recursive total least-squares approach,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 3845-3852.
    [11] J. D. Han, Y. Q. He, and W. L. Xu, “Angular acceleration estimation and feedback control: An experimental investigation,” Mechatronics, vol. 17, pp. 524-532, 2007.
    [12] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of Inertial Parameters of Manipulator Loads and Links,” The International Journal of Robotics Research, vol. 5, pp. 101-119, September 1986.
    [13] G. Calafiore, M. Indri, and B. Bona, “Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation,” Journal of Robotic Systems, vol. 18, pp. 55-68, 2001.
    [14] C. Presse and M. Gautier, “New criteria of exciting trajectories for robot identification,” in Proceedings of the IEEE International Conference on Robotics and Automation, 1993, pp. 907-912.
    [15] A. Janot, P. O. Vandanjon, and M. Gautier, “A Generic Instrumental Variable Approach for Industrial Robot Identification,” IEEE Transactions on Control Systems Technology, vol. 22, pp. 132-145, 2014.
    [16] A. Chae, C. Atkeson, J. Griffiths, and J. Hollerbach, “Experimental evaluation of feedforward and computed torque control,” in Proceedings of the IEEE International Conference on Robotics and Automation, 1987, pp. 165-168.
    [17] J.-J. E. Slotine and Weiping Li, “On the Adaptive Control of Robot Manipulators,” The International Journal of Robotics Research, vol. 6, pp. 49-59, September 1987.
    [18] J. J. Slotine and L. Weiping, “Adaptive manipulator control a case study,” in Proceedings of the IEEE International Conference on Robotics and Automation, 1987, pp. 1392-1400.
    [19] Y. Tang, “Terminal sliding mode control for rigid robots,” Automatica, vol. 34, pp. 51-56, January 1998.
    [20] J. J. Slotine and S. S. Sastry, “Tracking control of non-linear systems using sliding surfaces with application to robot manipulators,” in Proceedings of the American Control Conference, 1983, pp. 132-135.
    [21] A. D. Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, “Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 1623-1630.
    [22] M. C. Tsai, E. C. Tseng, and M. Y. Cheng, “Design of a torque observer for detecting abnormal load,” Control Engineering Practice, vol. 8, pp. 259-269, 2000.
    [23] J. Heinzmann and A. Zelinsky, “Quantitative Safety Guarantees for Physical Human-Robot Interaction,” The International Journal of Robotics Research, vol. 22, pp. 479-504, July 2003.
    [24] K. Ikuta, H. Ishii, and M. Nokata, “Safety Evaluation Method of Design and Control for Human-Care Robots,” The International Journal of Robotics Research, vol. 22, pp. 281-297, May 2003.
    [25] V. J. Lumelsky and E. Cheung, “Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, pp. 194-203, 1993.
    [26] D. M. Ebert and D. D. Henrich, “Safe human-robot-cooperation: image-based collision detection for industrial robots,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 1826-1831.
    [27] G. Hirzinger, A. Albu-Schaffer, M. Hahnle, I. Schaefer, and N. Sporer, “On a new generation of torque controlled light-weight robots,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2001, pp. 3356-3363.
    [28] Y. Yamada, Y. Hirasawa, S. Huang, Y. Umetani, and K. Suita, “Human-robot contact in the safeguarding space,” IEEE/ASME Transactions on Mechatronics, vol. 2, pp. 230-236, 1997.
    [29] A. Bicchi and G. Tonietti, “Fast and “soft-arm” tactics [robot arm design],” IEEE Robotics & Automation Magazine, vol. 11, pp. 22-33, 2004.
    [30] M. Zinn, O. Khatib, and B. Roth, “A new actuation approach for human friendly robot design,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 249-254.
    [31] A. De Luca, B. Siciliano, and L. Zollo, “PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments,” Automatica, vol. 41, pp. 1809-1819, 2005.
    [32] N. Hogan, “Impedance Control: An Approach to Manipulation,” in Proceedings of the American Control Conference, 1984, pp. 304-313.
    [33] J. E. Colgate and N. Hogan, “Robust control of dynamically interacting systems,” International Journal of Control, vol. 48, pp. 65-88, July 1988.
    [34] W. S. Newman, “Stability and Performance Limits of Interaction Controllers,” Journal of Dynamic Systems, Measurement, and Control, vol. 114, pp. 563-570, 1992.
    [35] F. Ficuciello, L. Villani, and B. Siciliano, “Variable Impedance Control of Redundant Manipulators for Intuitive Human-Robot Physical Interaction,” IEEE Transactions on Robotics, vol. 31, pp. 850-863, 2015.
    [36] F. Ficuciello, A. Romano, L. Villani, and B. Siciliano, “Cartesian impedance control of redundant manipulators for human-robot co-manipulation,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 2120-2125.
    [37] 王瑋辰, “多軸機械手臂自適應力量控制設計,” 碩士, 機械工程學系所, 國立中興大學, 台中市, 2015.
    [38] 江宇軒, “機械手臂之灰預測滑動模式自組織模糊控制器,” 碩士, 機電整合研究所, 國立臺北科技大學, 台北市, 2014.
    [39] 余家潤, “機械手臂之關節空間與工作空間的軌跡規劃,” 博士, 電機工程學系博士班, 淡江大學, 新北市, 2015.
    [40] 李昆蒲, “PID-PSO演算法應用於機械手臂控制系統設計,” 碩士, 機械與機電工程學系研究所, 國立中山大學, 高雄市, 2015.
    [41] 陳敬泓, “體感移動驅動機械手臂運動控制,” 碩士, 機械工程學系碩士班, 國立聯合大學, 苗栗縣, 2015.
    [42] 曾宇章, “機械手臂之自調式模糊滑動模式控制及利用雙眼立體視覺之雙臂機器人之動作模仿,” 碩士, 機械工程學系, 國立成功大學, 台南市, 2015.
    [43] 蔡柏謙, “基於逆向運動學之機械手臂控制,” 碩士, 電機工程研究所, 國立中央大學, 桃園縣, 2011.
    [44] 裴氏海玲, “以FPGA實現五軸關節型機械手臂之前向及逆向運動學,” 博士, 電機工程系, 南臺科技大學, 台南市, 2014.
    [45] 游翔麟, “基於模糊力量感測之六軸機械手臂的直覺式教導,” 碩士, 電機工程學系碩士班, 淡江大學, 新北市, 2015.
    [46] F. King Sun, R. C. Gonzalez, and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence: McGraw-Hill Inc., 1987.
    [47] H.Asada and JJE.Slotine, Robot analysis and control: John Wiley & Sons, 1986.
    [48] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, “Experimental robot identification using optimised periodic trajectories,” Mechanical Systems and Signal Processing, vol. 10, pp. 561-577, September 1996.
    [49] L. Se-Han and S. Jae-Bok, “Acceleration estimator for low-velocity and low-acceleration regions based on encoder position data,” IEEE/ASME Transactions on Mechatronics, vol. 6, pp. 58-64, 2001.
    [50] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data,” IEEE Transactions on Industrial Electronics, vol. 39, pp. 11-19, 1992.
    [51] P. Tomei, “Adaptive PD controller for robot manipulators,” IEEE Transactions on Robotics and Automation, vol. 7, pp. 565-570, 1991.
    [52] L. Biagiotti and Claudio Melchiorri, Trajectory Planning for Automatic Machines and Robots: Springer Science & Business Media, 2008.

    下載圖示 校內:2020-07-26公開
    校外:2020-07-26公開
    QR CODE