簡易檢索 / 詳目顯示

研究生: 汪正良
Wang, Cheng-Liang
論文名稱: 利用可能白色區域偵測之自動白平衡演算法
Automatic White Balancing Algorithm with Detection of Potential White Color Areas
指導教授: 李國君
Lee, Gwo Giun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 75
中文關鍵詞: 白平衡可能白色區域偵測
外文關鍵詞: White Balance, Detection of Potential White Color Areas
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種自動白平衡演算法,該演算法利用圖片中可能的白色區域作為參考,並據此參考區域計算校正色彩三原色(R,G,B)的增益係數,此增益係數將用以修正整張圖片中所有畫素的色彩,本論文提出的演算法基於白色表面的特性,由HSI色彩空間及正規化後的RGB色彩空間中,取出亮度及色度的統計資訊,並依此統計資訊決定在亮度及色度方面的限制條件,所有符合限制條件的色彩將會被認定為圖片中可能的白色區域,由於本論文提中的演算法能夠精確偵測出圖片中的可能白色區域,進而使得計算出的增益係數能夠更精確地修正圖片中的色彩,並且在CIELAB色彩空間中的數值與視覺品質的比較上皆勝過其他以傳統灰色世界演算法(gray world algorithm)為基礎的演算法。

    This thesis proposes an automatic white balancing algorithm that takes the potential white color areas in the image as reference to calculate the gain coefficients in the RGB color channels. The estimated gain coefficients are used to correct the colors in the image. According to the properties of the white color surface, the proposed algorithm determines some constraints on luminance and chrominance. These constraints are defined by the statistics from the HSI color space and the normalized RGB color space. The colors in the image that conform to the constraints are considered as the potential white colors. Because the proposed algorithm can detect the potential white color areas exactly, the estimated gain coefficients can correct the colors in the image accurately. The proposed algorithm also outperforms other automatic white algorithms that are based on the gray world algorithm in the comparison of the visual quality and the numerical comparisons.

    Abstract ii Table of Contents iv List of Figures vii Chapter 1 Introduction 1 1.1. Background 1 1.2. Organization of This Thesis 3 Chapter 2 Automatic White Balancing Algorithms 5 2.1. White Balancing Problem Statement 5 2.2. Gray World Assumption 8 2.2.1. Gray World Algorithm 8 2.2.2. Cast Detection and Cast Removal 9 2.2.3. Standard Deviation Weighted Gray World Algorithm 12 2.3. White Patch Algorithm 14 2.4. Gamut Mapping Algorithm 15 2.5. Neural Network for White Balancing 18 Chapter 3 Color Information Extraction 19 3.1. Color Space 19 3.1.1. The RGB Color Space 19 3.1.2. The HSI Color Space 20 3.1.3. The CIE Chromaticity Diagram 22 3.1.4. The CIELAB Color Space 24 3.2. White Balancing with Particular Area in the image 25 Chapter 4 Proposed Automatic White Balancing Algorithm 28 4.1. The Outline of Proposed Algorithm 28 4.2. Potential White Color Areas Detection 29 4.2.1. The Adopted Color Spaces 30 4.2.2. The Intensity Threshold 33 4.2.3. Reference Region Definition 35 4.2.4. The Saturation Threshold 38 4.3. Gain Coefficients Estimation 39 Chapter 5 Experimental Results 42 5.1. The Data Set for Experiment 42 5.2. Experimental Results of Potential White Color Areas Detection 45 5.3. Experimental Results of Weighting Parameter Adjustment 49 5.4. Experimental Results of Intensity Threshold Adjustment 50 5.5. Performance Comparison 52 Chapter 6 Conclusions and Future Work 71 6.1. Conclusions 71 6.2. Future Work 72 Bibliography 73

    [1] G. D. Finlayson, S. D. Hordley, A. Alsam, “Investigating von Kries-like adaptation using local linear models,” Color Research and Application, vol. 31, no.2, Apr. 2006.
    [2] G. D. Finlayson, M. S. Drew, B Funt, “Diagonal transform suffice for color constancy,” in Proc. the IEEE International Conference on Computer Vision, Berlin, Ger., pp. 164-171, May 1993.
    [3] Hong-Kwai LAM, Oscar C. AU and Chi-Wah WONG, “Automatic white balancing using standard deviation of RGB components,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 3, pp.921-924, 23-26 May 2004.
    [4] J. J. McCann, S. P. McKee and T.H. Taylor, “Quantitative studies in Retinex theory,” Vis. Res., vol. 16, pp.445-458, 1976.
    [5] E. H. Land, “The Retinex theory of color vision,” Sci. Amer., vol. 237, pp.108-129, 1977.
    [6] D. Forsyth, “A novel algorithm for color constancy,” International Journal of Computer Vision, vol. 5, pp. 5-36, 1990.
    [7] G. D. Finlayson, “Color in perspective,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 10, Oct. 1996.
    [8] B. Funt, V. Cardei and K. Barnard, “Learning Color Constancy,” in Proc. IS&T/SID Fourth Color Imaging Conference: Color Science, Systems and Applications, pp. 58-60, Nov. 1996.
    [9] Hajime Yamashina, Kiyoshi Fukushima and Hiroshi Kano, “White balance in inspection systems with a neural network,” Computer Integrated Manufacturing Systems, vol. 9, no. 1, pp. 3-8, 1996.
    [10] Francesca Gasparini and Raimondo Schettini, “Color balancing of digital photos using simple image statistics,” Pattern Recognition, vol. 37, no. 6, pp. 1201-1217, June 2004.
    [11] T. Cooper, “Color segmentation as an aid to white balancing for digital still cameras,” in Proc. SPIE - The International Society for Optical Engineering, vol. 4300, pp. 164-171, Jan. 2001.
    [12] Arcangelo Bruna, Francesca Gasparini, Filippo Naccari, and Raimondo Schettini, “Multidomain Pixel Analysis for illuminant Estimation and Compensation,” in Proc. SPIE - The International Society for Optical Engineering, vol. 6069, pp. 115-122, Jan. 2006.
    [13] Y. Liu, W. Chen and Y. Chen, “Automatic White Balance for Digital Still Camera,” IEEE Trans. on Consumer Electronics, vol. 41, no. 3, pp. 460-466, Aug. 1995.
    [14] Bo Hu, Qing Lin, Xuelei Kang and Guangmeng Chen, “A new algorithm for automatic white balance with priori,” in Proc. IEEE Asia-Pacific Conference on Circuits and Systems, pp. 109-112, 4-6 Dec. 2000.
    [15] Ching-Chih Weng, H. Chen, and Chiou-Shann Fuh, “A novel automatic white balance method for digital still camera,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp.3801-3804, 23-26 May 2005.
    [16] G.D. Finlayson, “Color constancy in diagonal chromaticity space,” in Proc. IEEE International Conference on Computer Vision, pp.218 – 223, 20-23 June 1995.
    [17] K. Barnard, L. Martin, B. Funt, and A. Coath, “A data set for color research,” Color Research and Application, vol. 27, no. 3, pp. 147-151, June 2002.
    [18] Brian Funt, Computational Vision Lab of Simon Fraser University, Available: http://www.cs.sfu.ca/~colour/data/index.html
    [19] R. Gonzalez and P. C. Wintz, “Digital Image Processing,” 2/E, Prentice Hall, Ch. 6, 2002.
    [20] Ze-Nian Li and Mark S. Drew, “Fundamentals of Multimedia,” Prentice Hall, Ch. 4, 2004.
    [21] Kobus Barnard, Vlad Cardei, and Brian Funt, “A comparison of computational color constancy algorithms - Part I: Methodology and experiments with synthesized data,” IEEE Trans. Image Processing, vol. 11, no. 9, pp. 972-984, Sept. 2002.
    [22] Kobus Barnard, Lindsay Martin, Vlad Cardei, and Brian Funt, “A comparison of computational color constancy algorithms - Part II: Experiments with image data,” IEEE Trans. Image Processing, vol. 11, no. 9, pp. 985-996, Sept. 2002.
    [23] G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst., vol. 310, pp. 1-26, 1980.
    [24] Kobus Barnard, "Improvements to gamut mapping colour constancy algorithms," 6th European Conference on Computer Vision, pp. 390-402, 2000.
    [25] T. Koizumi, H. Chun and H. Zen, “A new optical detector for a high-speed AF control,” IEEE Trans. Consumer Electronics, vol. 42, no. 4, pp. 1055-1061, Nov. 1996.
    [26] J. Lee, Y. Jung, B. Kim and S. Ko, “An advanced video camera system with robust AF, AE, and AWB control,” IEEE Trans. Consumer Electronics, vol. 47, no. 3, pp. 694-699, Aug. 2001.
    [27] R. Gershon, A.D. Jepson, and J.K. Tsotsos, “From [R,G,B] to surface reflectance: computing color constant descriptors in images,” Perception, pp. 755-758, 1988.
    [28] Vlad C. Cardei and Brian Funt, “Committee-based color constancy,” in Proc. the IS&T/SID Seventh Color Imaging Conference: Color Science, Systems and Applications, pp. 311-313, Nov. 1999.

    下載圖示 校內:2012-09-04公開
    校外:2012-09-04公開
    QR CODE