簡易檢索 / 詳目顯示

研究生: 李紀儇
Li, Ji-Syuan
論文名稱: 具零電壓切換之疊接交錯式高升壓直流-直流轉換器
High Step-Up Interleaved Stack DC-DC Converter with Zero Voltage Switching
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 高升壓比交錯式耦合電感軟切換
外文關鍵詞: High step-up, interleaved, coupled-inductor, soft-switching
相關次數: 點閱:98下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    應用耦合電感、主動式箝位、堆疊電容與交錯式等技術,本論文提出一個具有開關零電壓導通與二極體零電流截止的新型高升壓電路。由於結合各技術的優點,此電路擁有較高的升壓比、效率來符合再生能源需要的特性。並利用交錯並聯技術來提高整個電路的容量。
    此電路的核心精神為軟切換操作,於穩態工作時,電路耦合電感的漏感會與兩顆二次側電容諧振。在不同的諧振頻率下,部分功率開關和整流二極體將分別實現零電壓導通和零電流截止。故開關損耗和反向恢復問題會有所降低,進而提高了轉換器的效率。並且引進交錯並聯技術,其每一顆耦合電感的匝數比可以削減,且一次側的電流應力也會降低,故可提高電路整體容量。
    於文中,電路穩態特性如升壓比、功率元件承受耐壓耐流與漣波比例均進行了詳細的推導,並和現有的電路進行了比較。另外,並描繪了邊界圖區分軟開關的不同操作模式,爾後通過軟體模擬進行了驗證。最後,基於控制器TMDSDOCK28035的電路原型,操作於24 V輸入電壓、400 V輸出電壓、800 W輸出功率,用以驗證所提轉換器之可行性,在450W時擁有最高效率95.6%。

    ABSTRACT

    This thesis proposes a novel high step-up DC-DC converter with ZVS turn-on switches and ZCS turn-off diodes based on several existed techniques such as coupled-inductor, active clamping, stacked capacitor and interleaved technique. The proposed converter has a high conversion ratio, and high efficiency to meet the properties of renewable energy needs. Interleaved technique is used here in order to increase the capacity of circuit.
    The main objective of proposed circuit is soft-switching operation. The leakage inductance of coupled inductors resonates with two secondary-side capacitors during steady-state operating modes. When the converter is operated at different resonant frequencies, ZVS turn-on and ZCS turn-off can be respectively accomplished by some power switches and rectifying diodes. Then, the problems of switching loss and reverse recovery are mitigated and thus improve the efficiency of proposed converter. Besides, by applying interleaved technology, turns ratio of each coupled inductor can be reduced signifcantly, and current stress at primary-side winding is also decreased. Therefore, the capacity of circuit can be increased obviously.
    In the thesis, the steady-state characterisitcs, such as high step up voltage gain, voltage and current stress on the power components, and ripple ratio, are derived and compared with the conventional circuits. Border maps for different operating modes of soft-switching are also illustrated. Verification is done by software simulation. Lastly, by using controller TMDSDOCK28035, a circuit with 24V input voltage, 400V output voltage and 800W output power is implemented to prove the feasibility of proposed converter. The highest efficiency is around 95.6% when operating at 450W.

    CONTENTS 摘 要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII NOMENCLATURE IX CHAPTER 1 INTRODUCTION 1 1.1 Backgroud 1 1.2 Thesis outline 4 CHAPTER 2 INTRODUCTION OF HIGH STEP-UP CONVERTER 5 2.1 Isolated converter 5 2.1.1 Flyback converter 6 2.1.2 Forward converter 7 2.2 Non-isolated converter 8 2.2.1 Cascade boost converter 8 2.2.2 Super-lift converter 9 2.2.3 Switched-capacitor boost converter 11 2.2.4 Coupled-inductor boost converter 12 2.2.5 Stacked boost converter 14 2.2.6 Active clamp 17 2.2.7 Interleaving technique 19 2.3 Summary of this chapter 19 CHAPTER 3 NOVEL STACKED HIGH STEP-UP CONVERTER 21 3.1 The Proposed converter 21 3.2 Operating principle 22 3.3 Steady-state analysis 29 3.3.1 Equivalent circuit 29 3.3.2 Key parameters derivation 32 3.4 Summary of this chapter 37 CHAPTER 4 BOUNDARY MAP FOR ZERO-VOLTAGE-SWITCHING AND ZERO-CURRENT-SWITCHING 38 4.1 Possible operating modes 38 4.2 Mode map portrayed and formula derivation 42 4.3 Specification and design 48 4.3.1 Design Steps 48 4.3.2 Specification 48 4.3.3 Magnetizing inductance design 49 4.3.4 Coupled inductors design 49 4.3.5 Switches and diodes design 51 4.3.6 Output capacitor and clamping capacitor design 51 4.4 Summary of this chapter 54 CHAPTER 5 SIMULATION AND EXPERIMENT 55 5.1 Simulation 55 5.2 Appearance 60 5.3 Key waveforms 61 5.4 Efficiency 68 CHAPTER 6 CONCLUSION AND FUTURE WORK 70 6.1 Conclusion 70 6.2 Future work 70 REFERENCES 71

    REFERENCES

    [1] NASA Earth Observation (NEO). (2002, April). Global maps of Aerosol optical Depth [Online]. Available: http://earthobservatory.nasa.gov/GlobalMaps/view.php?d1=MODAL2_M_AER_OD.
    [2] V. Weinmann. (2014, June 6). Transport said to be responsible for one-third of PM2.5 pollution in Beijing [Online]. Available: http://sustainabletransport.org/transport-said-to-be-responsible-for- one-third-of-pm2-5-pollution-in-beijing/.
    [3] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen, and A. Ioinovici, “Ultra-Large Gain Step-Up Switched-Capacitor DC-DC Converter With Coupled Inductor for Alternative Sources of Energy,” IEEE Trans. on Circuits and systems, Vol. 59, No. 4, pp. 864-874, Apr. 2012.
    [4] Y. Zhao, X. Xiang, C. Li, Y. Gu, W. Li, and X. He, “Single-Phase High Step-Up Converter with Improved Multiplier Cell Suitable for Half-Bridge-Based PV Inverter System,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2807-2816, Jun. 2014.
    [5] A. Khaligh and Z. Li, “Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plugin Hybrid Electric Vehicles: State of the Art,” IEEE Trans. Veh. Technol., Vol. 59, No. 6, pp. 2806-2814, Jul. 2010.
    [6] Dr. Johnannes Topler. (2015 Mar 9). Comparison of fuel cell based hybrid vehicles with other alternative system [Online]. Available: http://www.slideshare.net/ReddyPrasad4/comparison-of- uel-cell-based-hybrid-vehicles-with-other-alternative-systems.
    [7] Y. P. Hsieh, “Novel High Efficiency High Step-Up DC-DC Converter with Coupled-Inductor,” Ph.D. dissertation, Dept. Elect. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan, R.O.C, 2013.
    [8] W. S. Liu, “Analysis and Design of Cascoded Converters for Fuel Cell Power Systems,” Ph.D. dissertation, Dept. Elect. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan, R.O.C, 2010.
    [9] Q. Zhao and F. C. Lee, “High-Efficiency, High Step-Up DC-DC Converters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65-73, Jan. 2003.
    [10] C. M. Huang, T. J. Liang, R. L. Lin, and J. F. Chen, “A Novel Constant Power Control Circuit for HID Electronic Ballast,” IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1573-1582, Sep. 2007.
    [11] T. Shimizu, K. Wada, and N. Nakamura, “Flyback-Type Single-Phase Utility Interactive Inverter with Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System,” IEEE Trans. Power Electron., Vol. 24, No. 2, pp. 376-387, Feb. 2009.
    [12] T. F. Wu, T. S. Lai, J. C. Hung, and Y. M. Chen, “Boost Converter with Coupled Inductors and Buck-Boost Type of Active Clamp,” IEEE Trans, on Industrial Electronics, Vol. 55, No. 1, pp. 154-162, Jan. 2008.
    [13] C. K. Tse and K. M. Adams, “Qualitative Analysis and Control of a DC-to-DC Boost Converter Operating in Discontinuous Mode,” IEEE Trans. On Power Electronics., Vol. 5, No. 3, pp. 323-330, Jul. 1990.
    [14] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-Efficiency DC-DC Converter with High Voltage Gain and Reduced Switch Stress,” IEEE Trans. on Industrial Electronics, Vol. 54, No. 1, pp. 354-364, Feb. 2007.
    [15] E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “High Conversion Ratio DC-DC Converters with Reduced Switch Stress,” IEEE Trans. on Circuits and Systems-I, Vol. 55, No. 7, pp. 2139-2151, Aug. 2008.
    [16] H. Terashi, I. Cohen, and T. Ninomiya, “Stability and Dynamic Response Improvement of Flyback DC-DC Converter by a Novel Control Scheme,” IEEE Applied Power Electronics Conf. and Exposition, Dallas, TX, USA, Mar. 10-14, 2002, pp. 389-394.
    [17] 梁適安,交換式電源供應器之理論與實務設計,全華科技圖書股份有限公司,民國八十三年。
    [18] L. salazar and P. D. Ziogas, “A High Frequency Forward DC-DC Converter Topology with Transformer Flux Balancing Capability,” IEEE Industry Applications Society Annual Meeting, Pittsburgh, PA, USA, Oct. 2-7, 1988, pp. 785-792.
    [19] N. Mohan, T. M. Undel, and W. P. Robbins, PowerElectronics:Converters, Applications and Design, Second Edition, John Wiley & Sons, 1995.
    [20] F. L. Luo and H. Ye, “Positive Output Cascade Boost Converters,” IEE Proc. on Electric Power Applications, Vol. 151, No. 5, pp. 590-606, Sep. 2004.
    [21] F. L. Luo and H. Ye, “Positive Output Super-Lift Converters,” IEEE Trans. on Power Electronics, Vol. 18, No. 1, pp. 105-113, Jan. 2003.
    [22] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC-DC PWM Converters,” IEEE Trans, on Circuits and Systems I, Vol. 55, No. 2, Mar. 2008.
    [23] Q. Zhao, F. Tao, and F. C. Lee, “A Front-End DC-DC Converter for Network Server Applications,” IEEE Power Electronics Specialists of Conf., Vancouver, BC, Canada, Jun. 17-21, 2001, pp. 1535-1539.
    [24] K. Harada and H. Sakamoto, “Switched Snubber for High Frequency Switching,” IEEE Power Electronics Specialists of Conf., San Antonio, TX, USA, Jun. 11-14, 1990. pp. 181-188.
    [25] Q. Zhao, F. Tao, Y. Hu, and F. C. Lee, “Active-Clamp DC-DC Converters Using Magnetic Switches,” IEEE Applied Power Electronics of Conf. and Exposition., Anaheim, CA, USA, Mar. 4-8, 2001, pp. 946-952.
    [26] Q. Zhao and F. C. Lee, “High Performance Coupled-Inductor DC-DC Converters,” IEEE Applied Power Electronics Conf. and Exposition., Miami Beach, FL, USA, Feb. 9-13, 2003, pp. 109-113.
    [27] K. C. Tseng and T. J. Liang, “Novel High-Efficiency Step-Up Converter,” IEE Proc. on Electric Power Applications, Vol. 151, No. 2, pp. 182-190, Mar. 2004.
    [28] O. Krykunov, “Analysis of the Extended Forward Converter for Fuel Cell Applications,” IEEE International Symposium on Industrial Electronics, Vigo, Spain, Jun. 4-7, 2007, pp. 661-666.
    [29] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High Boost Converter Using Voltage Multiplier,” IEEE Industrial Electronics Society of Conf., Nov. 6-10, 2005, pp. 567-572.
    [30] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel High Step-Up DC-DC Converter for Distributed Generation System,” IEEE Trans. Power Electron., Vol. 60, No. 4, pp. 1473-1482, Apr. 2013.
    [31] Y. P. Hsieh, J. F. Chen, L. S. Yang, C. Y. Wu, and W. S. Liu, “High-Conversion-Rratio Bidirectional DC-DC Converter with Coupled Inductor,” IEEE Trans. Power Electron., Vol. 61, No. 1, pp. 210-222, Jan. 2014.
    [32] X. Hu and C. Gong, “A High Voltage Gain DC-DC Converter Integrating Coupled-Inductor and Diode-Capacitor Techniques,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 789-799, Feb. 2014.
    [33] J. M. Kwon and B. H. Kwon, “High Step-up Active-Clamp Converter with Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems,” IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 108-155, Jan. 2009.
    [34] K. B. Park, D. Y. Cho, and G. W. Moon, “Couple-Inductor Boost Converter with Simple Resonant Technique,” IEEE Industrial Electronics Society of Conf., Vienna, Austria, Nov. 10-13, 2013, pp. 584-589.
    [35] C. Chang and M. A. Knights, “Interleaving Technique in Distributed Power Conversion Systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 42, No. 5, pp. 245-251, May 1995.
    [36] S. Dwari and L. Parsa, “An Efficient High-Step-Up Interleaved DC-DC Converter with a Common Active Clamp,” IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 66-78, Jan. 2011.
    [37] Y. T. Chen, S. M. Shiu, and R. H. Liang, “Analysis and Design of a Zero-Voltage-Switching and Zero-Current-Switching Interleaved Boost Converter,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 161-173, Jan. 2012.
    [38] S. H. Hosseini, E. Babaei, and T. Nouri, “An Interleaved High Step-Up DC-DC Converter with Reduced Voltage Stress across Semiconductors,” IEEE in Electrical and Computer Engineering Conf., Toronto, ON, Canada, May 4-7, 2014, pp. 1-6.
    [39] Y. C. Hsieh, K. Y. Lee, and K. F. Liao, “An Interleaved Bidirectional DC-DC Converter with Zero-Voltage-Switching,” IEEE in Power Electronics and Drive Systems Conf., Kitakyushu, Japan, Apr. 22-25, 2013, pp. 427-432.
    [40] X. Zhou, P. Xu, and F. C. Lee, “A Novel Current-Sharing Control Technique for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Trans. Power Electron, Vol. 15, No. 6, pp. 1153-1162, Nov. 2000.
    [41] P. L. Wong, P. Xu, B. Yang, and F. C. Lee, “Performance Improvements of Interleaving VRMs with Coupling Inductors,” IEEE Trans. Power Electron., Vol. 16, No. 4, pp. 499-507, Jul. 2001.
    [42] S. M. Chen, L. S. Yang, and J. F. Chen, “A Cascaded High Step-Up DC-DC Converter with Single Switch for Microsource Applications,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1146-1152, Apr. 2011.
    [43] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel High Step-Up DC-DC Converter with Coupled-Inductor and Switched-Capacitor Techniques,” IEEE Trans. on Industrial Electronics., Vol. 59, No. 2, pp. 998-1007, Feb. 2012.
    [44] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen, and A. Ioinovici, “Ultra-Large Gain Step-Up Switched-Capacitor DC-DC Converter With Coupled Inductor for Alternative Sources of Energy,” IEEE Trans. on Circuits and systems., Vol. 59, No. 4, pp. 864-874, Apr. 2012.
    [45] Z. Chen, Q. Zhou, and J. Xu., “Coupled-Inductor Boost Integrated Flyback Converter with High-Voltage Gain and Ripple-Free Input Current,” IET Power Electron., Vol. 8, pp. 213-220, Feb. 2014.
    [46] C. Mclyman, “DC Inductor Design Using Gapped Cores,” in Transformer and inductor design handbook, 3rd ed. New York: Marcel Dekker, 2004, ch.8, pp. 254-271.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE