| 研究生: |
蕭鈞悅 Hsiao, Chun-Yueh |
|---|---|
| 論文名稱: |
整合交叉流與生醫阻抗技術之細胞分離轉盤平台設計 The Integration of Crossflow and Bioimpedance Technique in Rotating Disc Platform Design for Cell Separation |
| 指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 交叉流 、定點照護 、電阻抗 、分離 、生物轉盤 |
| 外文關鍵詞: | tangential flow,, point-of-care (POC), impedance, separation |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對現今醫病比例不均及偏遠醫療資源不足的情況下,定點照護即時檢測 (Point-of-Care Test)是一種新趨勢,其具有快捷且操作簡單之優點,大大降低醫療人力需求、也可避免醫護人員直接接觸血液,且在短時間內讓醫師能作最有效率的臨床判斷。然而,POCT中的相關研究中,血液前處理為大部分,若欲提高檢測準確度,將血液有效分離是很重要的一環。故本研究整合交叉流與生醫阻抗技術之細胞分離轉盤平台設計,有別於以往的生物轉盤利用離心力與旋轉角加速度所提供之分力(尤拉力)作為工作原理,此設計將利用旋轉提供動力讓目標溶液能夠在交叉流道中被分離,換言之即為在旋轉碟盤上實踐尺寸篩檢之效果,利用此法可增加被檢測之液體量。本實驗透過改變轉速影響分子分離效果,並結合生醫阻抗技術進行分離效果的量測以減少系統的複雜度。從實驗結果得知,實驗時間僅需3秒鐘,當轉速達至3500 rpm,分離效果可以高達96%。雖然本研究設計具有快速分離之效果,但仍然有很多因素需考量。目前實驗僅以假體進行討論,尚未測試實際細胞在此設計之分離效果,但本研究提出整合交叉流與生醫阻抗技術之細胞分離轉盤平台設計,能作為POCT之血液分離診斷應用之設計參考。
Blood is one of the most important material that can be used to diagnose disease. To prevent from the effects of blood cells for cell free plasma detection, the blood separation efficiency is a critical step. In this study, we present a novel continuous flow separator using a cross-flow filter structure on rotating disc. We combined impedance bioanalysis and a simple blood sample separation mechanism into the centrifugal platform, and thus reduces the system’s complexity. The working principle of the proposed separator is based on size exclusion of cell through tangential flow that induced by rotation which is different from the past rotation disc system. As a pilot study of this new centrifugal flow control element, we demonstrate the efficient separation that can collect the amount of the fluid without the molecules from the sample. While the rotation stopped, the result showed that the separation efficiency was only 96% under 3500 rpm within a short, 3 seconds interval, however, we just can find rare particles in the analyst chamber, thus we assumed that the lower efficiency may cause by the amount of fluid. Though the prototype of the design had performance rapid separation, the device still need to improve. Therefore, we conclude that the proposed device can take as reference for the application of blood separation and use for point-of-care (POC) diagnostic system.
[1] P. Yager, G. J. Domingo, and J. Gerdes, “Point-of-Care Diagnostics for Global Health,” Annu. Rev. Biomed. Eng., vol. 10, no. 1, pp. 107–144, 2008.
[2] P. von Lode, “Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods,” Clin. Biochem., vol. 38, no. 7, pp. 591–606, Jul. 2005.
[3] V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of Care Diagnostics: Status and Future,” Anal. Chem., vol. 84, no. 2, pp. 487–515, Jan. 2012.
[4] A. Tay, A. Pavesi, S. R. Yazdi, C. T. Lim, and M. E. Warkiani, “Advances in microfluidics in combating infectious diseases,” Biotechnol. Adv., vol. 34, no. 4, pp. 404–421, Jul. 2016.
[5] E.-S. Kim, E. H. Ahn, E. Chung, and D.-H. Kim, “Recent advances in nanobiotechnology and high-throughput molecular techniques for systems biomedicine,” Mol. Cells, vol. 36, no. 6, pp. 477–484, Dec. 2013.
[6] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, and N. Kim, “Lab on a Cd,” Annu. Rev. Biomed. Eng., vol. 8, no. 1, pp. 601–628, 2006.
[7] M. Tang, G. Wang, S.-K. Kong, and H.-P. Ho, “A Review of Biomedical Centrifugal Microfluidic Platforms,” Micromachines, vol. 7, no. 2, p. 26, Feb. 2016.
[8] O. Strohmeier et al., “Centrifugal microfluidic platforms: advanced unit operations and applications,” Chem. Soc. Rev., vol. 44, no. 17, pp. 6187–6229, 2015.
[9] N. Pamme, “Continuous flow separations in microfluidic devices,” Lab. Chip, vol. 7, no. 12, pp. 1644–1659, Nov. 2007.
[10] M. I. Mohammed and M. P. Y. Desmulliez, “Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection,” Biosens. Bioelectron., vol. 61, pp. 478–484, Nov. 2014.
[11] J. Wang, Design and implementation of an impedance analyzer based on Arduino Uno : A pilot study of bioelectrical impedance analysis. 2015.
[12] J. Chen et al., “Blood plasma separation microfluidic chip with gradual filtration,” Microelectron. Eng., vol. 128, pp. 36–41, Oct. 2014.
[13] W. a. H. S. S. Wewala, J. K. Kasi, A. K. Kasi, and N. Afzulpurkar, “Cell Separation Through Ascending and Descending Curvilinear Microchannels,” Appl. Mech. Mater., vol. 300–301, pp. 1649–1653, 2013.
[14] N. Nivedita and I. Papautsky, “Continuous separation of blood cells in spiral microfluidic devices,” Biomicrofluidics, vol. 7, no. 5, p. 054101, Sep. 2013.
[15] M. G. Lee, J. H. Shin, S. Choi, and J.-K. Park, “Enhanced blood plasma separation by modulation of inertial lift force,” Sens. Actuators B Chem., vol. 190, pp. 311–317, Jan. 2014.
[16] X. Xu, P. Sarder, Z. Li, and A. Nehorai, “Optimization of microfluidic microsphere-trap arrays,” Biomicrofluidics, vol. 7, no. 1, Feb. 2013.
[17] T. G. Kang, Y.-J. Yoon, H. Ji, P. Y. Lim, and Y. Chen, “A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures,” J. Micromechanics Microengineering, vol. 24, no. 8, p. 087001, 2014.
[18] J. Zhang, Q. Guo, M. Liu, and J. Yang, “A lab-on-CD prototype for high-speed blood separation,” J. Micromechanics Microengineering, vol. 18, no. 12, p. 125025, 2008.
[19] S. Hugo, K. Land, M. Madou, and H. Kido, “A centrifugal microfluidic platform for point-of-care diagnostic applications,” South Afr. J. Sci., vol. 110, no. 1–2, pp. 1–7, Jan. 2014.
[20] Y. Deng et al., “Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips,” Biomicrofluidics, vol. 8, no. 2, p. 024101, Mar. 2014.
[21] R. Gorkin et al., “Centrifugal microfluidics for biomedical applications,” Lab. Chip, vol. 10, no. 14, pp. 1758–1773, Jun. 2010.
[22] B. S. Lee et al., “A fully automated immunoassay from whole blood on a disc,” Lab. Chip, vol. 9, no. 11, pp. 1548–1555, Jun. 2009.
[23] B. S. Lee et al., “Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood,” Lab. Chip, vol. 11, no. 1, pp. 70–78, Dec. 2010.
[24] S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab. Chip, vol. 11, no. 8, pp. 1448–1456, Apr. 2011.
[25] C. E. Nwankire, A. Venkatanarayanan, T. Glennon, T. E. Keyes, R. J. Forster, and J. Ducrée, “Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform,” Biosens. Bioelectron., vol. 68, pp. 382–389, Jun. 2015.
[26] N. Godino, E. Vereshchagina, R. Gorkin, and J. Ducrée, “Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device,” Microfluid. Nanofluidics, vol. 16, no. 5, pp. 895–905, May 2014.
[27] M.-S. Choi and J.-C. Yoo, “Automated Centrifugal-Microfluidic Platform for DNA Purification Using Laser Burst Valve and Coriolis Effect,” Appl. Biochem. Biotechnol., vol. 175, no. 8, pp. 3778–3787, Apr. 2015.
[28] Peng K.-J., “使用田口法於指叉式電容性生物感測器的最佳化設計之二維電場模擬, Two-dimensional Electric-field Simulation for Optimal Design of Interdigitated Capacitive Biosensor by Taguchi Method,” Natl. Cent. Univ., Aug. 2011.
[29] K. N. Han et al., “Immunoassay of cardiac biomarkers using a photodiode array biochip,” Sens. Actuators B Chem., vol. 207, pp. 470–476, Feb. 2015.
[30] W. U. Dittmer et al., “Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor,” Clin. Chim. Acta, vol. 411, no. 11, pp. 868–873, Jun. 2010.
[31] R. F. Dutra and L. T. Kubota, “An SPR immunosensor for human cardiac troponin T using specific binding avidin to biotin at carboxymethyldextran-modified gold chip,” Clin. Chim. Acta, vol. 376, no. 1–2, pp. 114–120, Feb. 2007.
[32] W. Lee et al., “A centrifugally actuated point-of-care testing system for the surface acoustic wave immunosensing of cardiac troponin I,” Analyst, vol. 138, no. 9, pp. 2558–2566, Apr. 2013.
[33] S. Ko, B. Kim, S.-S. Jo, S. Y. Oh, and J.-K. Park, “Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel,” Biosens. Bioelectron., vol. 23, no. 1, pp. 51–59, Aug. 2007.
[34] W. G. Jiang, Electric Cell-Substrate Impedance Sensing and Cancer Metastasis. Springer Science & Business Media, 2012.
[35] I. Giaever and C. R. Keese, “A morphological biosensor for mammalian cells,” Nature, vol. 366, no. 6455, pp. 591–592, Dec. 1993.
[36] J. Wegener, C. R. Keese, and I. Giaever, “Electric Cell–Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces,” Exp. Cell Res., vol. 259, no. 1, pp. 158–166, Aug. 2000.
[37] P.-V. Jaime, C. Joan, C.-F. Jordi, R.-V. Ivón, and M.-C. Pere Ll., “Bioimpedance Technique for Point-of-Care Devices Relying on Disposable Label-Free Sensors – An Anemia Detection Case,” INTECH, 2014.
[38] T. A. Nguyen, T.-I. Yin, D. Reyes, and G. A. Urban, “Microfluidic Chip with Integrated Electrical Cell-Impedance Sensing for Monitoring Single Cancer Cell Migration in Three-Dimensional Matrixes,” Anal. Chem., vol. 85, no. 22, pp. 11068–11076, Nov. 2013.
[39] D. K. Kamat, D. Bagul, and P. M. Patil, “Blood Glucose Measurement Using Bioimpedance Technique,” Adv. Electron., vol. 2014, Dec. 2014.
[40] M. R. R. Khan, A. Khalilian, and S.-W. Kang, “Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane,” Sensors, vol. 16, no. 2, p. 265, Feb. 2016.
[41] H.-W. Jung, Y. W. Chang, G. Lee, S. Cho, M.-J. Kang, and J.-C. Pyun, “A capacitive biosensor based on an interdigitated electrode with nanoislands,” Anal. Chim. Acta, vol. 844, pp. 27–34, Sep. 2014.
[42] J. H. Yeon and J.-K. Park, “Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip,” Anal. Biochem., vol. 341, no. 2, pp. 308–315, Jun. 2005.
[43] J. S. Daniels and N. Pourmand, “Label-Free Impedance Biosensors: Opportunities and Challenges,” Electroanalysis, vol. 19, no. 12, pp. 1239–1257, Jun. 2007.
[44] “Instructions for Use Samsung LABGEO IB10,” Samsung LABGEO IB10, 2015.
[45] C. W. S. Iv, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab. Chip, vol. 15, no. 5, pp. 1230–1249, Feb. 2015.
[46] T. Li, Y. Fan, Y. Cheng, and J. Yang, “An electrochemical Lab-on-a-CD system for parallel whole blood analysis,” Lab. Chip, vol. 13, no. 13, pp. 2634–2640, Jun. 2013.
[47] J.-N. Kuo and X.-F. Chen, “Plasma separation and preparation on centrifugal microfluidic disk for blood assays,” Microsyst. Technol., vol. 21, no. 11, pp. 2485–2494, Nov. 2015.
[48] D. J. Kinahan, S. M. Kearney, M. T. Glynn, and J. Ducrée, “Spira mirabilis enhanced whole blood processing in a lab-on-a-disk,” Sens. Actuators Phys., vol. 215, pp. 71–76, Aug. 2014.
[49] T. Li, L. Zhang, K. M. Leung, and J. Yang, “Out-of-plane microvalves for whole blood separation on lab-on-a-CD,” J. Micromechanics Microengineering, vol. 20, no. 10, p. 105024, Oct. 2010.
[50] R. Burger, N. Reis, J. G. da Fonseca, and J. Ducrée, “Plasma extraction by centrifugo-pneumatically induced gating of flow,” J. Micromechanics Microengineering, vol. 23, no. 3, p. 035035, 2013.
[51] L. Riegger et al., “Single-step centrifugal hematocrit determination on a 10-$ processing device,” Biomed. Microdevices, vol. 9, no. 6, pp. 795–799, Dec. 2007.
[52] J. Liu et al., “Fabrication of SU-8 moulds on glass substrates by using a common thin negative photoresist as an adhesive layer,” J. Micromechanics Microengineering, vol. 24, no. 3, p. 035009, 2014.
[53] 莊勝雄, 游士諄, 林明俊, and 周祖亮, “SU-8 光阻在矽晶圓基材上製作微流道面板之研究,” 南亞學報第二十六期, pp. 23–36, 2006.
[54] X. Ren et al., “Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform,” ACS Appl. Mater. Interfaces, vol. 6, no. 15, pp. 12618–12628, Aug. 2014.
[55] J. Mr Bhimrao Sheshrao and R. Mr. S. D., “Embedded System For Impedance Measurement,” IJAICT, vol. 3, no. 3, pp. 1143–1146, Jul. 2016.
校內:立即公開