簡易檢索 / 詳目顯示

研究生: 徐彬翔
Hsu, Bing-Shiang
論文名稱: 高頻感應加熱器之DSP數位控制設計
DSP Based Control System for High-Frequency Induction Heating Machine
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 電磁熱療磁奈米粒全橋串聯諧振數位微控制器
外文關鍵詞: Thermotherapy, Magnetic nanoparticle, Full-bridge series-resonant circuit, Microcontroller
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁性材料應用於生物組織之熱療已有數十年之研究,其中磁奈米粒熱療加熱系統主要是利用直徑10到50奈米的氧化鐵(Fe3O4),將其放置於交變磁場下加熱至42 ℃以上,藉此達到殺死癌細胞,治療癌症的目的。磁奈米粒的加熱效果會受到顆粒大小、磁場大小與頻率的影響,在系統的設計上必須設計一套效率高、磁場輻射集中且可變頻的電磁加熱系統。本研究使用高速數位微控制器(TI TMS320F28235)做為數位控制系統的核心,以脈波寬度調變技術控制全橋串聯諧振電路,精確地控制交變磁場的輸出頻率與功率,並經由磁奈米加熱實驗,發現顆粒大小10 nm磁奈米粒對於295 kHz附近的感應頻率有較佳的升溫反應,升溫可達13 ℃。

    The application of magnetic materials for hyperthermia of biological tissue has been studied for decades. The underlying notion of magnetic nanoparticle (MNP) thermotherapy is to utilize 10- to 50-nm diameter of ferric oxide (Fe3O4) which are heated up to 42 ℃ under AC magnetic field for cancer therapy applications. The size of nanoparticles and the strength and frequency of magnetic field all have influence to the heating efficiency of MNP. In order to achieve the goal of killing cancer cells using the AC magnetic field, we designed a digital controlled heating system to generate magnetic field that is frequency adjustable. The core of the system is based on a high speed microcontroller(TI TMS320F28235)and a full-bridge series resonant circuit for the high frequency induction heater. The heating results show that the system can produce fast and accurate outputs. The experiments show that the MNP produces thermal loss and has maximum temperature increase up to 13 ℃ under a AC magnetic field. Finally, we discuss the heating effect of different density of magnetic nanoparticles under different operating frequency.

    摘 要 I ABSTRACT II 誌謝 III 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1研究背景 1 1-2 國內外文獻回顧 2 1-3 研究動機與目的 4 1-4全文概述 4 第二章 感應加熱系統原理 5 2-1 感應加熱之基本原理 5 2-2 感應加熱基本特性 5 2-2-1 磁滯損失(Hysteresis Loss) 5 2-2-2 渦流損失(Eddy Current Loss) 6 2-2-3 集膚效應(Skin effect) 8 2-3 磁奈米加熱原理 9 第三章 系統設計 11 3-1 數位控制系統 11 3-1-1 系統架構 12 3-2控制核心TMS320F28235簡介 13 3-3 降壓型電路 15 3-3-1 導通模式 15 3-3-2 動作原理 16 3-3-3 降壓型閘極驅動電路 19 3-4 全橋串聯諧振電路架構與分析 20 3-4-1 全橋串聯諧振電路架構 20 3-4-2 全橋串聯諧振電路元件設計 21 3-4-3 全橋串聯諧振式電路操作模式 25 3-4-4 全橋驅動與隔離電路 30 3-5 系統軟體主程式架構 31 3-5-1 系統初始化 32 3-5-2 外部周邊模組 35 3-5-1 系統中斷服務副程式 42 第四章 實驗結果與討論 43 4-1前言 43 4-2系統電路測試 44 4-2-1 PWM控制訊號 44 4-2-2 全橋驅動訊號 45 4-3 諧振電路参數設定 46 4-4-1 加熱頻率與電流量測 47 4-4磁奈米粒感應加熱實驗 49 4-4-2 第一部份相同濃度不同頻率升溫實驗 49 4-4-3第二部分不同濃度與不同頻率加熱實驗 53 4-5 實驗結果與討論 54 第五章 結論與未來展望 56 5-1 結論 56 5-2 未來展望 57 參考文獻 58 自述 62

    [1] 垣添忠生,“寫給患者和家屬的癌症醫療聖經”,台北市,2006。
    [2] G. J. Gordon, Bioinformatics in cancer and cancer therapy, Totowa, NJ,Humana Press, 2009.
    [3] M. Schwab, Encyclopedia of cancer,Springer, New York , 2009.
    [4] T. Sato, A. Masai, Y. Ota, H. Sato, H. Matuski, T. Yanada, M. Sato, N. Kodama, and S. Minakawa, "The development of anticancer agent releasing microcapsule made of ferromagnetic amorphous flakes for intratissue hyperthermia," Magnetics, IEEE Transactions on, vol. 29, pp. 3325-3330, 1993.
    [5] S. Jacobsen, P. R. Stauffer, and D. G. Neuman, "Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease," Biomedical Engineering, IEEE Transactions on, vol. 47, pp. 1500-1509, 2000.
    [6] F. Montecchia, "Microstrip-antenna design for hyperthermia treatment of superficial tumors," Biomedical Engineering, IEEE Transactions on, vol. 39, pp. 580-588, 1992.
    [7] K. D. Paulsen, "Electromagnetic modeling in hyperthermia: current status and future directions," in Engineering in Medicine and Biology Society, Proceedings of the Annual International Conference of the IEEE, pp. 852-853 vol.2. , 1988
    [8] F. Wu, W. Chen, J. Bai, J. Zou, Z. Wang, H. Zhu, and Z. Wang, "Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies," Ultrasound in medicine & biology, vol. 28, pp. 535-542, 2002.
    [9] 張梅蘭,物理因子治療學冷、熱光、水療及機械性治療,合記,臺北市,2002。
    [10] R. Gilchrist, R. Medal, W. Shorey, R. Hanselman, J. Parrott, and C. Taylor, "Selective inductive heating of lymph nodes" Annals of Surgery, vol. 146, pp. 596-606, 1957.
    [11] A. Jordan, R. Scholz, P. Wust, H. Fähling, and F. Roland, "Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 201, pp. 413-419, 1999.
    [12] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, "Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 225, pp. 118-126, 2001.
    [13] 何金滿,莊富全,“具柔性切換高頻感應加熱器之實體製作”,中原學報 (自然科學及工程系列),第27期,第83-87頁,1999。
    [14] 何金滿,許志仰,“DSP-Based 高頻感應加熱器之設計與研製”,中原大學電機工程系碩士論文,2000。
    [15] 何金滿,鄭一鋒,“相移式零電壓切換高頻感應加熱器之設計與研製”,中原大學電機工程學系碩士論文,2001。
    [16] 王榮爵,張宏榮,“全橋式零電壓切換技術之感應加熱器”, 華岡工程學報, 第154頁,2007。
    [17] 蘇信華,“奈米磁粒熱療感應加熱系統之研製”台南,成功大學電機工程學系,2008。
    [18] 陳俊成,“應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統”台南,成功大學電機工程學系,2008。
    [19] R. Hergt, W. Andra, C. d'Ambly, I. Hilger, W. Kaiser, U. Richter, and H. Schmidt, "Physical limits of hyperthermia using magnetite fine particles," IEEE Transactions on Magnetics, vol. 34, pp. 3745-3754, 1998.
    [20] 陳熹棣,高週波基礎理論與應用 淬火、微波加熱、電漿、超音波加工,全華,臺北市,1995。
    [21] 賴耿陽,高週波工業應用技術,復漢,台南市,1987。
    [22] J. R. Garcia, J. M. Burdio, A. Martinez, and J. Sancho, "A method for calculating the workpiece power dissipation in induction heating processes," in Applied Power Electronics Conference and Exposition, 1994. APEC '94. Conference Proceedings 1994., Ninth Annual, vol.1,pp. 302-307 , 1994.
    [23] S. Semiatin and D. Stutz, "Induction heat treatment of steel," American Society for Metals, Metals Park, OH, 1986.
    [24] W. Brown, "Thermal fluctuations of a single-domain particle," Physical Review, vol. 130, pp. 1677-1686, 1963.
    [25] L. Neel, "Some new results on antiferromagnetism and ferromagnetism," Reviews of Modern Physics, vol. 25, pp. 58-63, 1953.
    [26] L. Neel, "Thermoremanent magnetization of fine powders," Reviews of Modern Physics, vol. 25, pp. 293-295, 1953.
    [27] X. Wang, H. Gu, and Z. Yang, "The heating effect of magnetic fluids in an alternating magnetic field," Journal of Magnetism and Magnetic Materials, vol. 293, pp. 334-340, 2005.
    [28] J. Wei, X. Bo, and Z. Dean, "Design and application of digital servo controller module based on DSP and CPLD," in Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, pp. 7536-7540, 2008.
    [29] C. Zeyun, X. Zhixin, and Z. Heqing, "A design based on DSP digital controlled high switching frequency and constant charging current system," in Communications, Computers and signal Processing, 2003. PACRIM. 2003 IEEE Pacific Rim Conference on, vol.2, pp. 868-870,2003.
    [30] X. Hu and G. Nan, "Research of Full Digital DC/DC Converter Based on DSP," in Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on, pp. 65-68,2009.
    [31] H. Wu, "The Research of Half-bridge DC/DC Converter Based on DSP," in Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on, 2009, pp. 545-548.
    [32] T. S. Anandhi, S. P. Natarajan, and T. Anitha, "UC3907 ASIC and TMS320F2407A DSP based Control of Paralleled Buck DC-DC Converters," in INDICON, 2005 Annual IEEE, pp. 472-475, 2005.
    [33] TMS320F28235 Digital Signal Controllers Data Manual,Texas Instruments, 2007.
    [34] 梁適安,交換式電源供給器之理論與實務設計,全華,臺北市,1994。
    [35] M. Kazimierczuk and D. Czarkowski, Resonant Power Converters, Solutions Manual,Wiley-Interscience, 1995.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE