簡易檢索 / 詳目顯示

研究生: 黃郁傑
Huang, Yu-Jie
論文名稱: 以生物電阻抗頻譜做為大白鼠放射性腸病變電氣切片檢查
Electrical Impedance Spectroscopy of Tissue as Electrical Biopsy for Radiation Enteropathy in Rats
指導教授: 鄭國順
Cheng, Kuo-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 68
中文關鍵詞: 電氣切片生物電阻抗電阻抗頻譜放射性腸病變色調-飽合-密度轉換低染色面積細胞外電阻
外文關鍵詞: Electrical biopsy, bio-impedance, electrical impedance spectroscopy, radiation entropathy, Hue-Saturation-Density (HSD) transformation, low staining area, extracellular resistance
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電阻抗是一種常用來測定物質特性的方法,特別是應用在生物醫學領域上。生物電阻抗頻譜可以測量出組織的電阻性與電容性。在本研究中,我們使用一個簡單可攜帶基於商用積體電路的生物電阻抗頻譜系統來測量大白鼠接受放射線照射後的腸組織,然後將生物電阻抗頻譜測量結果代入電容與電阻組成之等效電路模型,以求得組織電氣特性,再將組織電氣特性與組織型態變化做比較。實驗結果顯示生物組織電氣特性依診斷測試分析對組織學上的變化有高度的反應且優良的偵測表現 (Receiver operating characteristic analysis, Area under curve: 0.95-1.00, p<0.01)。除此之外,在組織切片影像上低染色面積也與組織電氣特性有關。細胞外電阻與組織切片影像上低染色面積其相關性最高(Spearman’s rank correlation: -0.757, p<0.01)。此研究確立與支持電氣切片的結果可以反應傳統生物組織學之發現且與之相關,而這種方式應用在組織之病理診斷上有很大的潛力。利用組織之電氣特性來研究與區別組織之狀態,此概念可以稱作電氣切片。

    Electrical impedance is one of the most frequently used parameters for characterizing material properties, especially in biomedical applications. The resistive and capacitive characteristics of tissue may be revealed by electrical impedance spectroscopy (EIS). In this study, rat intestinal tissues after irradiation were assessed by a portable and simple EIS system based on commercially available integrated circuits. The EIS results were fitted to a resistor-capacitor circuit model to determine the electrical properties of the tissue. The variations in the electrical characteristics of the tissue were compared to morphological and histological findings. The electrical properties, based on receiver operation characteristic (ROC) analysis, strongly reflected the histological changes with excellent diagnosis performance (Area under curve: 0.95-1.00, p<0.01). In addition, the ratio of the optical low staining area of the sampled histological image varied with the tissue’s electrical parameters. The parameter most strongly correlated with the ratio of optical low staining area was extracellular resistance (Spearman’s rank correlation: -0.757, p<0.01). The results of this study confirm that electrical biopsy reflects conventionally described histological changes. This approach may significantly augment tissue pathological diagnoses. The electrical parameters of the tissues could be used to assess tissue status during investigation, and this concept can be referred to as “electrical biopsy.”

    中文摘要 (I) Abstract (II) 誌謝 (IV) Contents (V) List of Tables (VIII) List of Figures (IX) Chapter 1 Introduction (1) 1.1 Background (1) 1.2 Electrical impedance responses to histological changes in tissue (3) 1.3 Radiation enteropathy in rats (6) 1.4 Electrical circuit model for tissue (10) 1.5 Correlation between morphologic changes and electrical characteristics of tissues (11) 1.6 Motivation and purpose (12) Chapter 2 Materials and Methods (13) 2.1 Electrical impedance spectroscopy (EIS) system (13) 2.2 Electrodes (17) 2.3 Animal care and use (18) 2.4 Whole abdomen irradiation for radiation enteropathy of rats (19) 2.5 Observation of symptoms (19) 2.6 Electrical impedance spectroscopy measurements of intestinal tissue (20) 2.7 Histological examination (21) 2.8 Acquisition of histological images (22) 2.9 Computing the ratio of low staining area (23) 2.10 Experimental design (26) 2.11 Statistics and analysis (26) Chapter 3 Results (28) 3.1 Performance of the proposed EIS system (28) 3.2 Validating the ability to solve the electrical circuit model(29) 3.3 Post-irradiation symptoms (30) 3.4 Measured EIS of intestinal tissue (32) 3.5 Results of three-element electrical circuit model for tissues (35) 3.6 Histological examinations evaluated by radiation injury score (38) 3.7 Associations between the electrical characteristics of the tissues and histological findings (39) 3.8 Results of ratio of low staining area on histological images (42) 3.9 Correlations between the ratio of optical low staining area and the electrical biopsy parameters (43) Chapter 4 Discussion (48) 4.1 Electrical impedance spectroscopy system for electrical biopsy (48) 4.2 Correlation between histological findings and electrical parameters of tissues (51) 4.3 Correlation between extracellular resistance and ratio of optical low staining area (54) Chapter 5 Conclusion and Prospects (60) References (62)

    [1] H. P. Schwan, “Electrical properties of tissue and cell suspensions,” Adv Biol Med Phys, vol. 5, pp. 147-209, 1957.
    [2] B. A. Wilkinson, R. H. Smallwood, A. Keshtar et al., “Electrical impedance spectroscopy and the diagnosis of bladder pathology: a pilot study,” J Urol, vol. 168, no. 4 Pt 1, pp. 1563-7, Oct, 2002.
    [3] D. G. Beetner, S. Kapoor, S. Manjunath et al., “Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance,” IEEE Trans Biomed Eng, vol. 50, no. 8, pp. 1020-5, Aug, 2003.
    [4] C. A. Gonzalez, C. Villanueva, S. Othman et al., “Impedance spectroscopy for monitoring ischemic injury in the intestinal mucosa,” Physiol Meas, vol. 24, no. 2, pp. 277-89, May, 2003.
    [5] D. Gupta, C. A. Lammersfeld, J. L. Burrows et al., “Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer,” Am J Clin Nutr, vol. 80, no. 6, pp. 1634-8, Dec, 2004.
    [6] C. Skourou, P. J. Hoopes, R. R. Strawbridge et al., “Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats,” Physiol Meas, vol. 25, no. 1, pp. 335-46, Feb, 2004.
    [7] S. Abdul, B. H. Brown, P. Milnes et al., “A clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN),” Gynecol Oncol, vol. 99, no. 3 Suppl 1, pp. S64-6, Dec, 2005.
    [8] H. Ahn, H. Shin, S. Yun et al., “Measurement of bioimpedance and cell viability during ischemia-reperfusion in the rat liver,” Proc Conf IEEE Eng Med Biol Soc, vol. 2, pp. 1945-7, 2005.
    [9] A. Stojadinovic, A. Nissan, Z. Gallimidi et al., “Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multicenter prospective clinical trial,” J Clin Oncol, vol. 23, no. 12, pp. 2703-15, Apr 20, 2005.
    [10] S. Abdul, B. H. Brown, P. Milnes et al., “The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia,” Int J Gynecol Cancer, vol. 16, no. 5, pp. 1823-32, Sep-Oct, 2006.
    [11] A. Keshtkar, and R. H. Smallwood, “Electrical impedance spectroscopy and the diagnosis of bladder pathology,” Physiol Meas, vol. 27, no. 7, pp. 585-96, Jul, 2006.
    [12] J. Nuutinen, T. Lahtinen, M. Turunen et al., “A dielectric method for measuring early and late reactions in irradiated human skin,” Radiother Oncol, vol. 47, no. 3, pp. 249-54, Jun, 1998.
    [13] T. Tamura, M. Tenhunen, T. Lahtinen et al., “Modelling of the dielectric properties of normal and irradiated skin,” Phys Med Biol, vol. 39, no. 6, pp. 927-36, Jun, 1994.
    [14] K. S. Osterman, K. D. Paulsen, and P. J. Hoopes, “Application of linear circuit models to impedance spectra in irradiated muscle,” Ann N Y Acad Sci, vol. 873, pp. 21-9, Apr 20, 1999.
    [15] K. D. Paulsen, K. S. Osterman, and P. J. Hoopes, “In vivo electrical impedance spectroscopic monitoring of the progression of radiation-induced tissue injury,” Radiat Res, vol. 152, no. 1, pp. 41-50, Jul, 1999.
    [16] K. S. Osterman, P. J. Hoopes, C. DeLorenzo et al., “Non-invasive assessment of radiation injury with electrical impedance spectroscopy,” Phys Med Biol, vol. 49, no. 5, pp. 665-83, Mar 7, 2004.
    [17] A. J. G. Eric J Hall, Radiobiology for the radiologist, Philadelphia, PA 19106 USA: Lippincott Williams & Wilkins, 2006.
    [18] C. W. Langberg, T. Sauer, J. B. Reitan et al., “Tolerance of rat small intestine to localized single dose and fractionated irradiation,” Acta Oncol, vol. 31, no. 7, pp. 781-7, 1992.
    [19] R. J. Halter, A. Hartov, J. A. Heaney et al., “Electrical impedance spectroscopy of the human prostate,” IEEE Trans Biomed Eng, vol. 54, no. 7, pp. 1321-7, Jul, 2007.
    [20] Y. S. Hoe, E. D. Gurewitsch, A. Shaahinfar et al., “Measuring bioimpedance in the human uterine cervix: towards early detection of preterm labor,” Conf Proc IEEE Eng Med Biol Soc, vol. 4, pp. 2368-72, 2004.
    [21] J. Spottorno, M. Multigner, G. Rivero et al., “Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current,” Phys Med Biol, vol. 53, no. 6, pp. 1701-13, Mar 21, 2008.
    [22] K. R. Aroom, M. T. Harting, C. S. Cox, Jr. et al., “Bioimpedance analysis: a guide to simple design and implementation,” J Surg Res, vol. 153, no. 1, pp. 23-30, May 1, 2009.
    [23] K. S. Cole, and R. H. Cole, “Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics,” J Chem Phys, vol. 9, no. 4, pp. 341-50, 1941.
    [24] D. A. McRae, M. A. Esrick, and S. C. Mueller, “Changes in the noninvasive, in vivo electrical impedance of three xenografts during the necrotic cell-response sequence,” Int J Radiat Oncol Biol Phys, vol. 43, no. 4, pp. 849-57, Mar 1, 1999.
    [25] M. H. Jensen, T. Sauer, F. Devik et al., “Late changes following single dose roentgen irradiation of rat small intestine,” Acta Radiol Oncol, vol. 22, no. 4, pp. 299-303, 1983.
    [26] S. L. Robbins, V. Kumar, A. K. Abbas et al., Robbins and Cotran Pathologic Basis of Disease: Saunders/Elsevier, 2010.
    [27] C.-Y. Chen, “The Design of Multi-Frequency Bioimpedance Measuring System for Clinical Applications,” Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 2007.
    [28] J. A. Van Der Laak, M. M. Pahlplatz, A. G. Hanselaar et al., “Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy,” Cytometry, vol. 39, no. 4, pp. 275-84, Apr 1, 2000.
    [29] R. S. Longhurst, Geometrical and physical optics, 3d ed., London: Longman, 1973.
    [30] D. Tsunami, J. McNames, A. Colbert et al., “Variable frequency bioimpedance instrumentation,” Conf Proc IEEE Eng Med Biol Soc, vol. 4, pp. 2386-9, 2004.
    [31] B. Rigaud, L. Hamzaoui, M. R. Frikha et al., “In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range,” Physiol Meas, vol. 16, no. 3 Suppl A, pp. A15-28, Aug, 1995.
    [32] M. Hauer-Jensen, “Late radiation injury of the small intestine. Clinical, pathophysiologic and radiobiologic aspects. A review,” Acta Oncol, vol. 29, no. 4, pp. 401-15, 1990.
    [33] L. Xin, D. Xiuzhen, and F. Feng, “Study on changes of characteristic parameters of biological tissues impedance spectroscopy in vitro within 5 to 360 min after excision at the frequency range from 1Hz to 1MHz,” Conf Proc IEEE Eng Med Biol Soc, vol. 2, pp. 1123-6, 2005.
    [34] N. Beltran, G. Sanchez-Miranda, M. Godinez et al., “Gastric Impedance Spectroscopy in Cardiovascular Surgery Patients vs. Healthy Volunteers,” Conf Proc IEEE Eng Med Biol Soc, vol. 3, pp. 2516-9, 2005.
    [35] T. Morimoto, S. Kimura, Y. Konishi et al., “A study of the electrical bio-impedance of tumors,” J Invest Surg, vol. 6, no. 1, pp. 25-32, Jan-Feb, 1993.
    [36] B. H. Brown, P. Milnes, S. Abdul et al., “Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study,” BJOG, vol. 112, no. 6, pp. 802-6, Jun, 2005.
    [37] M. Gerosa, E. Zimlichman, D. Ventura et al., “Measurement of electrical skin impedance of dermal-visceral zones as a diagnostic tool for disorders of the immune system,” Lupus, vol. 15, no. 7, pp. 457-61, 2006.
    [38] S. Kimura, T. Morimoto, T. Uyama et al., “Application of electrical impedance analysis for diagnosis of a pulmonary mass,” Chest, vol. 105, no. 6, pp. 1679-82, Jun, 1994.
    [39] P. Rostagno, I. Birtwisle, F. Ettore et al., “Immunohistochemical determination of nuclear antigens by colour image analysis: application for labelling index, estrogen and progesterone receptor status in breast cancer,” Anal Cell Pathol, vol. 7, no. 4, pp. 275-87, Dec, 1994.
    [40] J. Bulten, J. A. van der Laak, J. H. Gemmink et al., “MIB1, a promising marker for the classification of cervical intraepithelial neoplasia,” J Pathol, vol. 178, no. 3, pp. 268-73, Mar, 1996.
    [41] J. A. Van Der Laak, J. R. Westphal, L. J. Schalkwijk et al., “An improved procedure to quantify tumour vascularity using true colour image analysis. Comparison with the manual hot-spot procedure in a human melanoma xenograft model,” J Pathol, vol. 184, no. 2, pp. 136-43, Feb, 1998.
    [42] C. MacAulay, H. Tezcan, and B. Palcic, “Adaptive color basis transformation. An aid in image segmentation,” Anal Quant Cytol Histol, vol. 11, no. 1, pp. 53-8, Feb, 1989.
    [43] A. C. Ruifrok, “Quantification of immunohistochemical staining by color translation and automated thresholding,” Anal Quant Cytol Histol, vol. 19, no. 2, pp. 107-13, Apr, 1997.
    [44] H. Harms, H. M. Aus, M. Haucke et al., “Segmentation of stained blood cell images measured at high scanning density with high magnification and high numerical aperture optics,” Cytometry, vol. 7, no. 6, pp. 522-31, Nov, 1986.
    [45] R. C. González, and R. E. Woods, Digital Image Processing: Pearson/Prentice Hall, 2008.

    無法下載圖示 校內:2015-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE