| 研究生: |
張人文 Chang, Jen-Wen |
|---|---|
| 論文名稱: |
第二型糖尿病病人發病前的身體質量指數軌跡變化 The Trajectories of BMI Before Diagnosis of Type 2 Diabetes in Taiwan |
| 指導教授: |
余聰
Yu, Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 公共衛生學系 Department of Public Health |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 第二型糖尿病 、身體質量指數 、BMI 、巢式病例對照 、潛在類別軌跡分析 、線性混合效應模型 |
| 外文關鍵詞: | Obesity, type 2 diabetes,, BMI, latent class trajectory analysis, linear mixed-effect model, trajectory |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:第二型糖尿病普遍被認為與肥胖相關,隨著全球肥胖率的日益增長,未來糖尿病的盛行率預計將會大幅增加。因此,過重與肥胖是第二型糖尿病的關鍵危險因子之一,除了增加罹病的風險,甚至會引起心血管疾病的併發症。然而,當糖尿病病人確診為糖尿病前,體重或是肥胖持續時間有相當大的差異。而在亞洲地區,儘管過重與肥胖率比起世界其他國家還要低,罹患第二型糖尿病的年紀卻更輕,身體質量指數(BMI)更小,相較之下,亞洲人罹患第二型糖尿病的風險反而高得不成比例。在相似的身體質量指數(BMI)之下,亞洲人的內臟肥胖和中央型肥胖率高於歐洲人,有更高的胰島素阻抗風險。有鑑於第二型糖尿病病人的體重異質性大,且亞洲人在罹病之前可能會表現出與白種人不同的身體質量指數(BMI)軌跡模式,因此本篇研究欲進一步以臺灣資料庫,探討臺灣第二型糖尿病病人在確診前的身體質量指數(BMI)變化,透過了解身體質量指數(BMI)模式的變化,也許可以對於糖尿病流行病學提供新的見解,採取精準公共衛生預防政策。
目的:使用臺灣的資料庫,利用潛在類別軌跡分析(Latent class trajectory analysis),統計分析在最初未有第二型糖尿病的臺灣人,在罹病之前的身體質量指數(BMI)變化模組類別。再 將不同身體質量指數(BMI)模組類別,利用線性混合效應模型(linear mixed-effect model) ,探討腰圍、血壓、空腹血糖和膽固醇等心血管疾病相關危險因子軌跡變化分析。
方法:本研究使用臺灣美兆健康數據資料庫自1996年至2017年的健檢資料,採用巢式病例對照 (nested case-control)研究方式,將發生糖尿病的病例組與非糖尿病個案的對照組以1:4之比例進行發生密度取樣之配對。當收納資料配對完成後,透過潛在類別軌跡分析(latent class trajectory analysis),分辨識別在第二型糖尿病發病前隨時間推移具有不同身體質量指數(BMI)軌跡模式的分類組別,以評估找尋能夠描述收集資料適合建模的最佳類別分組數。再以此各類別分組數,以線性混合效應模型(linear mixed-effect model)探討分析第二型糖尿病人發病前的身體質量指數(BMI)軌跡變化,以及相關心血管代謝危險因子分析。
結果:將收納資料配對後,分成病例組7,618人與對照組15,316人,再以潛在類別軌跡方法評估病例組分組,可將罹病前的身體質量指數(BMI)軌跡分成三個組別,分別為穩定過重組(stable overweight),體重增加組(weight gain)和肥胖組(obese)。多數患有第二型糖尿病的人落在穩定過重組(stable overweight) (n=7,016, 92.1 %),在追蹤年間平均身體質量指數(標準差)為25.1公斤/公尺2(3.2公斤/公尺2),介於過重與肥胖(24公斤/公尺2 ≤ BMI<27 公斤/公尺2)之間,體重變化波動不大;而未被診斷第二型糖尿病的對照組,追蹤平均身體質量指數(標準差)則為23.1公斤/公尺2(3.06公斤/公尺2),體重維持相對穩定,並且保持在參考正常範圍數值。以線性混合效應模型繪製軌跡圖,發現穩定過重組(stable overweight)和對照組在整體上各項指標軌跡上升或下降趨勢相近,而肥胖組(obese)在身體質量指數(BMI)、腰圍、體脂率、空腹血糖、收縮壓、舒張壓和總膽固醇等變項軌跡上與其他組別趨勢較為不同,體重增加組(weight gain)則是在低密度脂蛋白膽固醇(LDL)、高密度脂蛋白膽固醇(HDL)和三酸甘油脂(TG)等變項上與其他組別趨勢較為不同。
結論:本研究是使用糖尿病發生密度配對方式來探討發病前的身體質量指數(BMI)變化,確定了三種不同的身體質量指數(BMI)組別,以了解在糖尿病發病前之身體質量指數(BMI)軌跡變化,發現在發展成第二型糖尿病之前,身體質量指數(BMI)在穩定過重組(stable overweight)為最主要的族群,而非肥胖組(obese),也許未來在第二型糖尿病的防治方向上,可以著重在更強化整體族群體重的下降。
SUMMARY
Obesity is associated with risk for type 2 diabetes. However, people with diabetes show great variability in terms of BMI, weight gain, and duration of obesity at the time of diagnosis. This study analyzed the data which was retrieved from MJ Health Resource Center between 1996 and 2017 in Taiwan, and used latent class trajectory analysis to model the patterns of BMI in the years before people developed diabetes. There were three different trajectories of BMI patterns identified, including the “stable overweight” group (n = 7,016, 92.1 %), “weight gain” group (n = 333, 4.4 %), and “obese” group (n = 269, 3.5 %). This study also used linear mixed-effect model to examine the mean values of BMI, waist circumference, body fat percentage and other cardiometabolic risk factors such as blood pressure and cholesterol at year 0 and the annual change of these values prior to year 0 for the three identified BMI trajectory classes as well as the control group without type 2 diabetes.
Kahn, S., Hull, R. & Utzschneider, K (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006). doi: 10.1038/nature05482
Jayedi A, Soltani S, Motlagh SZ, Emadi A, Shahinfar H, Moosavi H, Shab-Bidar S (2022). Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. BMJ. 2022 Jan 18;376:e067516. doi: 10.1136/bmj-2021-067516.
NCD Risk Factor Collaboration (2016). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016;387:1513-1530. doi: 10.1016/S0140-6736(16)00618-8
Lingvay I, Sumithran P, Cohen RV, le Roux CW (2022). Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet. 2022 Jan 22;399(10322):394-405. doi: 10.1016/S0140-6736(21)01919-X.
Hanson RL, Narayan KM, McCance DR, Pettitt DJ, Jacobsson LT, Bennett PH, Knowler WC (1995). Rate of weight gain, weight fluctuation, and incidence of NIDDM. Diabetes. 1995 Mar;44(3):261-6. doi: 10.2337/diab.44.3.261.
Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, Hu FB (2009). Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009 May 27;301(20):2129-40. doi: 10.1001/jama.2009.726.
Yaghootkar H, Whitcher B, Bell JD, Thomas EL (2020). Ethnic differences in adiposity and diabetes risk - insights from genetic studies. J Intern Med. 2020 Sep;288(3):271-283. doi: 10.1111/joim.13082.
Ohn JH, Kwak SH, Cho YM, Lim S, Jang HC, Park KS, Cho NH (2016). 10-year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 2016 Jan;4(1):27-34. doi: 10.1016/S2213-8587(15)00336-8.
Brancati FL, Wang NY, Mead LA, Liang KY, Klag MJ (1999). Body weight patterns from 20 to 49 years of age and subsequent risk for diabetes mellitus: the Johns Hopkins Precursors Study. Arch Intern Med. 1999 May 10;159(9):957-63. doi: 10.1001/archinte.159.9.957.
Dhana K, Nano J, Ligthart S, et al (2016). Obesity and life expectancy with and without diabetes in adults aged 55 years and older in the Netherlands: a prospective cohort study. PLoS Med 2016;13:e1002086. doi:10.1371/journ al.pmed.1002086.
Nano J, Dhana K, Asllanaj E, Sijbrands E, Ikram MA, Dehghan A, Muka T, Franco OH (2020). Trajectories of BMI Before Diagnosis of Type 2 Diabetes: The Rotterdam Study. Obesity (Silver Spring). 2020 Jun;28(6):1149-1156. doi: 10.1002/oby.22802.
American Diabetes Association; Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin Diabetes 1 January 2022; 40 (1): 10–38. doi: 10.2337/cd22-as01
社團法人中華民國糖尿病學會(2022), 2022第2型糖尿病臨床照護指引。Retrieved from http://www.endo-dm.org.tw/DB/book/88/11103%E6%8C%87%E5%BC%95_v6-2_all(%E5%85%A7%E6%96%87).pdf
World Health Organization, et al (2020). The top 10 causes of death. Retrieved from https://www.who.int/zh/news-room/fact-sheets/detail/the-top-10-causes-of-death
World Health Organization, et al (2016). Global report on diabetes: executive summary. World Health Organization, 2016.
International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: International Diabetes Federation, 2021.
社團法人中華民國糖尿病學會(2019),臺灣糖尿病年鑑2019第2型糖尿病。Retrieved from http://www.endo-dm.org.tw/DB/book/73/%E8%87%BA%E7%81%A3%E7%B3%96%E5%B0%BF%E7%97%85%E5%B9%B4%E9%91%912019%E7%AC%AC2%E5%9E%8B%E7%B3%96%E5%B0%BF%E7%97%85%E5%85%AC%E5%91%8A_%E5%A3%93%E7%B8%AE.pdf
Barbara B. Kahn, Jeffrey S. Flier (2000). Obesity and insulin resistance. J Clin Invest. 2000;106(4):473-481. doi:.10.1172/JCI10842.
DeFronzo RA, Eldor R, Abdul-Ghani M (2013). Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2013 Aug;36 Suppl 2(Suppl 2):S127-38. doi: 10.2337/dcS13-2011.
Lu JY, Huang KC, Chang LC et al (2008). Adiponectin: a biomarker of obesity-induced insulin resistance in adipose tissue and beyond. J Biomed Sci 2008;15:565-576. doi: 10.1007/s11373-008-9261-z.
Gopalan A, Mishra P, Alexeeff SE, Blatchins MA, Kim E, Man AH, Grant RW (2018). Prevalence and predictors of delayed clinical diagnosis of Type 2 diabetes: a longitudinal cohort study. Diabet Med. 2018 Dec;35(12):1655-1662. doi: 10.1111/dme.13808.
Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence (1997): findings from a national cohort of US adults. Am J Epidemiol. 1997 Aug 1;146(3):214-22. doi: 10.1093/oxfordjournals.aje.a009256.
Jacobs-van der Bruggen MA, Spijkerman A, van Baal PH, Baan CA, Feskens EJ, Picavet HS, van der A DL, Verschuren WM (2010). Weight change and incident diabetes: addressing an unresolved issue. Am J Epidemiol. 2010 Aug 1;172(3):263-70. doi: 10.1093/aje/kwq134.
Gray N, Picone G, Sloan F, Yashkin A (2015). Relation between BMI and diabetes mellitus and its complications among US older adults. South Med J. 2015 Jan;108(1):29-36. doi: 10.14423/SMJ.0000000000000214.
Vistisen D, Witte DR, Tabák AG, Herder C, Brunner EJ, Kivimäki M, Færch K (2014). Patterns of obesity development before the diagnosis of type 2 diabetes: the Whitehall II cohort study. PLoS Med. 2014 Feb 11;11(2):e1001602. doi: 10.1371/journal.pmed.1001602.
Chiu CJ, Li SL, Wu CH, Du YF (2016). BMI Trajectories as a Harbinger of Pre-Diabetes or Underdiagnosed Diabetes: an 18-Year Retrospective Cohort Study in Taiwan. J Gen Intern Med. 2016 Oct;31(10):1156-63. doi: 10.1007/s11606-016-3750-y.
Kuwahara K, Honda T, Nakagawa T, Yamamoto S, Hayashi T, Mizoue T (2017). Body mass index trajectory patterns and changes in visceral fat and glucose metabolism before the onset of type 2 diabetes. Sci Rep. 2017 Mar 7;7:43521. doi: 10.1038/srep43521.
Lennon H, Kelly S, Sperrin M, et al. (2018) .Framework to construct and interpret latent class trajectory modelling. BMJ Open 2018;8:e020683. doi: 10.1136/bmjopen-2017-020683
衛生福利部國民健康署(2020),成人健康體位標準。 Retrieved from
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=9737
Sheiner, L.B., Grasela, T.H (1991). An introduction to mixed effect modeling: Concepts, definitions, and justification. Journal of Pharmacokinetics and Biopharmaceutics 19 (Suppl 3), S11–S24 (1991). doi:10.1007/BF01371005
Wei GS, Coady SA, Reis JP, Carnethon MR, Coresh J, D'Agostino RB Sr, Goff DC Jr, Jacobs DR Jr, Selvin E, Fox CS (2015). Duration and Degree of Weight Gain and Incident Diabetes in Younger Versus Middle-Aged Black and White Adults: ARIC, CARDIA, and the Framingham Heart Study. Diabetes Care. 2015 Nov;38(11):2042-9. doi: 10.2337/dc14-2770.
Introduction to SAS. UCLA: Statistical Consulting Group. Retrieved from https://stats.oarc.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/
Judith E. Neter, Bianca E. Stam, Frans J. Kok, Diederick E. Grobbee, and Johanna M. Geleijnse (2003). Influence of Weight Reduction on Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Hypertension. 2003 Nov; 42(5):878-84. doi: 10.1161/01.HYP.0000094221.86888.AE
Feng L, Nian S, Tong Z, Zhu Y, Li Y, Zhang C, Bai X, Luo X, Wu M, Yan Z (2019). Age-related trends in lipid levels: a large-scale cross-sectional study of the general Chinese population. BMJ Open. 2020 Mar 18;10(3):e034226. doi: 10.1136/bmjopen-2019-034226.
校內:2028-07-27公開