簡易檢索 / 詳目顯示

研究生: 楊子賢
Yang, Tzu-Hsien
論文名稱: 透過圖形演算法整合不同全基因組的高通量實驗數據以建立與分析轉錄調控網路
Constructing and analysing transcriptional regulatory networks via graph algorithm-based integration of different genome-wide high-throughput data
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 97
中文關鍵詞: 轉錄調控網路轉錄調控路徑轉錄因子剔除微陣列染色質免疫沉澱
外文關鍵詞: transcription factor knockout microarray, chromatin immunoprecipitation, transcriptional regulatory network, transcriptional regulatory pathway
相關次數: 點閱:148下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 轉錄調控是生物學家解開細胞對外界刺激反應機制的重要問題,而現今有不同的高通量實驗方法提供對細胞轉錄調控不同面向的了解。高通量的轉錄因子剔除微陣列提供了基因調控的資訊,另一方面,染色質免疫沉澱的高通量實驗提供了對轉錄因子與基因結合的全面性量測,這兩個方法分別提供了對轉錄調控不同層次的實驗資訊。然而,這兩個實驗方式皆有其天生的問題與不足,在此論文中,我們將對這兩種實驗結果提供進一步的分析方法,並進一步重建基因轉錄調控網路。在論文的第一個部分,我們由生物上的觀點提出了一個能說明由轉錄因子剔除微陣列所得到的轉錄因子基因調控因果對之間分子機制的方法。我們將這個方法實作到 Reimand 等人所分析出的轉錄因子基因調控因果對上,發現我們的方法能進一步的找出更具有生物性意義的轉錄因子基因對,同時也提供了其背後可能的分子調控機制。在這些可能的分子機制,大約有七百左右的假說已在不同的文獻中由實驗所驗證。在本論文的第二個部分,我們提出了一新穎的方法來找出由染色質免疫沉澱的高通量實驗所得到轉錄因子基因結合對中真正在細胞中有執行生理功能的轉錄因子基因結合對。相較於之前相關的研究,我們的方法有較佳的生物性結果,且我們的方法也能分析染色質免疫沉澱次世代定序實驗的結果,也驗證了在不同的生物物種間的可行性。在論文的第三部分,我們重建了酵母菌中的基因轉錄調控網路。不同的實驗狀況下的每一個轉錄因子基因調控對,在兩個不同信賴度的基因調控網路中,所有可能的轉錄調控路徑都由我們所發展的圖形資料探勘的方法自動地找出。這些轉錄調控路徑提供了酵母菌細胞中基因調控網路的靜態全貌。總合這三個部分,此論文中所提出的方法以及重建的轉錄調控網路,將讓生物學家能進一步設計其分析下游的生化實驗,來揭開細胞中更全面的調控機制。

    Transcriptional regulation is important for cellular responses to external stimuli. The high throughput transcription factor knockout microarrays (TFKMs) provide useful information about gene regulation. Besides, high throughput chromatin immunoprecipitation (ChIP) experiments are now the most comprehensive approaches for identifying the binding sites of transcription factors (TFs) to their target genes. These two methods unravel different aspects of transcriptional regulatory networks and have their own natural defects and insufficiency. In this dissertation, we first propose a method based on the biological knowledge to elucidate the molecular mechanisms for the causative TF-gene pairs identified by high throughput TFKMs. The proposed method was applied to the TFKM analysis results of Reimand {em et al.} We then demonstrate the biological significance of our refined (i.e., biologically interpretable) TF knockout targets by assessing their functional enrichment, expression coherence, and the prevalence of protein-protein interactions. Our refined TF knockout targets outperformed the original TF knockout targets across all measures. About seven hundred hypotheses of molecular mechanisms for the causative TF-gene pairs generated by our methods have been experimentally validated in the literature. In the second part of the dissertation, we provide a novel algorithm to extract functional TF-gene binding pairs from the results of high throughput ChIP experiments. Compared with previous related works, our method outperformed three existing methods. The identified functional targets of TFs also showed statistical significance over the randomly assigned TF-gene pairs. We also demonstrate that our method is dataset independent and can apply to ChIP-seq data and the {em E. coli} genome. In the third part of this dissertation, we reconstruct the transcriptional regulatory networks in yeast. For each TF-gene regulatory pair under different experimental conditions, all possible transcriptional regulatory pathways in two underlying networks (constructed using experimentally verified TF-gene binding pairs and TF-gene regulatory pairs from the literature) for the specified experimental conditions were automatically enumerated by TRP mining procedures developed from the graph theory. The transcriptional regulatory pathways mined out by our graph data mining procedures provide the panoramic static view on the yeast transcriptional regulatory network. The proposed methods and results in this dissertation can facilitate biologists to design and analyse downstream experiments on the cellular regulatory mechanisms.

    中文摘要 I Abstract (English) III Acknowledgement V List of Tables X List of Figures XI List of Algorithms XIII List of Abbreviations XIV Chapter 1 Introduction 1 1.1 MotivationandLiteratureReview . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Biological interpretation for causative TF-gene pairs . . . . . . . . 2 1.1.2 FunctionalTF-genebindingpairs . . . . . . . . . . . . . . . . . . 3 1.1.3 TRPs in cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 DissertationContributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 DissertationOrganization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 2 Biologically Interpretable Causative TF-gene Pairs 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Overall algorithm flow . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Identify the molecular mechanisms for causative TF-gene pairs . . 13 2.2.4 Estimate biological significance . . . . . . . . . . . . . . . . . . . 15 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Biological interpretablepairs . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Biological verificationofourmethod . . . . . . . . . . . . . . . . 21 2.3.3 Case studies of the identified the molecular mechanisms . . . . . . 23 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Our method can eliminate noise in the original dataset . . . . . . . 25 2.4.2 Our result is better than the random results . . . . . . . . . . . . . 27 2.4.3 Our method performs better than existing methods . . . . . . . . . 28 2.4.4 Issues about the underlying network . . . . . . . . . . . . . . . . . 31 2.4.5 Estimatedfalsenegativerateofour algorithm . . . . . . . . . . . . 32 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 3 Functional TF-gene Binding Pairs 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 ChIP-chip data and TF knockout data . . . . . . . . . . . . . . . . 35 3.2.2 Protein-protein interaction data and mRNA expression data . . . . . 36 3.2.3 Benchmark control sets . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Algorithm to Infer Functional Binding TF-gene Pairs . . . . . . . . . . . . 37 3.3.1 Finding the hypostatic TF-gene regulation relation . . . . . . . . . 38 3.3.2 Calculating the RCSs for the confidence of the TF-gene regulation . 40 3.4 Results andDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Overviewof the approach . . . . . . . . . . . . . . . . . . . . . . 42 3.4.2 Validation on a literature-proven benchmark TF-gene set . . . . . . 44 3.4.3 82% of the original TF-gene binding pairs suggest functionality . . 45 3.4.4 Biological significance comparison with previous methods . . . . . 47 3.4.5 Comparison with random assignments . . . . . . . . . . . . . . . . 53 3.4.6 Applicability to different datasets . . . . . . . . . . . . . . . . . . 57 3.4.7 Applicability to ChIP-seq datasets and the E. coli genome . . . . . 59 3.4.8 Biological applicability of our method . . . . . . . . . . . . . . . . 62 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Chapter 4 Yeast Transcriptional Regulatory Pathway Database 64 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 ConstructionandContents . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.2 TRP mining procedures and construction of YTRP . . . . . . . . . 66 4.2.3 Implementationof theweb serviceofYTRP . . . . . . . . . . . . 69 4.2.4 StatisticsofYTRP . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Utility and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.1 Database interface . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.2 Comparisonwithrelatedworks . . . . . . . . . . . . . . . . . . . 74 4.3.3 Issues related toYTRP . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter 5 Conclusions and Future Work 82 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 References 86 Publication List 96

    [1] J. Aach, W. Rindone, and G. Church, “Systematic management and analysis of yeast gene expression data,” Genome Research, vol. 10, pp. 431–445, 2000.

    [2] D. Abdulrehman, P. T. Monteiro, M. C. Teixeira, N. P. Mira, A. B. Lourenc¸o, S. C. dos Santos, T. R. Cabrito, A. P. Francisco, S. C. Madeira, R. S. Aires, et al., “YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface,” Nucleic acids research, vol. 39, no. suppl 1, pp. D136–D140, 2011.

    [3] A. Beyer, S. Bandyopadhyay, and T. Ideker, “Integrating physical and genetic maps: from genomes to interaction networks,” Nature Reviews. Genetics, vol. 8, pp. 699–710, 2007.

    [4] A. Beyer, C. Workman, J. Hollunder, D. Radke, U. Mo¨ ller, T. Wilhelm, and T. Ideker, “Integrated assessment and prediction of transcription factor binding,” PLoS Computa- tional Biology, vol. 2, p. e70, 2006.

    [5] E. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein, J. Cherry, and G. Sherlock, “GO:: TermFinder - open source software for accessing Gene Ontology information and find- ing significantly enriched Gene Ontology terms associated with a list of genes,” Bioin- formatics, vol. 20, pp. 3710–3715, 2004.

    [6] J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley, E. T. Chan, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. R. Engel, et al., “Saccharomyces Genome Database: the genomics resource of budding yeast,” Nucleic Acids Research, vol. 40, no. D1, pp. D700–D705, 2012.

    [7] R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. Wolfs- berg, A. Gabrielian, D. Landsman, D. Lockhart, et al., “A genome-wide transcriptional analysis of the mitotic cell cycle,” Molecular Cell, vol. 2, pp. 65–74, 1998.

    [8] S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. Brown, and I. Herskowitz, “The transcriptional program of sporulation in budding yeast,” Science, vol. 282, pp. 699–705, 1998.

    [9] W. Cochran, Sampling techniques. John Wiley & Sons, 2007.

    [10] J. A. Coffman, R. Rai, D. M. Loprete, T. Cunningham, V. Svetlov, and T. G. Cooper, “Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae.,” Journal of Bacteriology, vol. 179, no. 11, pp. 3416–3429, 1997.

    [11] G. O. Consortium et al., “The gene ontology: enhancements for 2011,” Nucleic Acids Research, vol. 40, no. D1, pp. D559–D564, 2012.

    [12] T. Cormen, Introduction to algorithms. Cambridge: The MIT press, 2001.

    [13] N. Eckert-Boulet, P. S. Nielsen, C. Friis, M. M. dos Santos, J. Nielsen, M. C. Kielland- Brandt, and B. Regenberg, “Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p,” Yeast, vol. 21, no. 8, pp. 635–648, 2004.

    [14] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull, “Graphviz-open source graph drawing tools,” in Graph Drawing, (New York), pp. 483–485, Springer, 2002.

    [15] I. Erb and E. van Nimwegen, “Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters,” PLoS One, vol. 6, no. 9, p. e24279, 2011.

    [16] J. Ernst, H. Plasterer, I. Simon, and Z. Bar-Joseph, “Integrating multiple evidence sources to predict transcription factor binding in the human genome,” Genome Research, vol. 20, pp. 526–536, 2010.

    [17] R. A. Fisher, Statistical methods for research workers. Genesis Publishing Pvt Ltd, 1925.

    [18] P. Friden and P. Schimmel, “LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanu- cleotide core sequence.,” Molecular and Cellular Biology, vol. 8, no. 7, pp. 2690–2697, 1988.

    [19] W. Fury, F. Batliwalla, P. K. Gregersen, and W. Li, “Overlapping probabilities of top ranking gene lists, hypergeometric distribution, and stringency of gene selection crite- rion,” in Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pp. 5531–5534, IEEE, 2006.

    [20] F. Gao, B. Foat, and H. Bussemaker, “Defining transcriptional networks through in- tegrative modeling of mRNA expression and transcription factor binding data,” BMC Bioinformatics, vol. 5, p. 31, 2004.

    [21] Y. Garten, S. Kaplan, and Y. Pilpel, “Extraction of transcription regulatory signals from genome-wide DNA–protein interaction data,” Nucleic Acids Research, vol. 33, pp. 605–615, 2005.

    [22] A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, M. Eisen, G. Storz, D. Botstein, and P. Brown, “Genomic expression programs in the response of yeast cells to environmental changes,” Science Signaling, vol. 11, p. 4241, 2000.

    [23] H. Ge, Z. Liu, G. M. Church, and M. Vidal, “Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae,” Nature Genetics, vol. 29, no. 4, pp. 482–486, 2001.

    [24] I. Georis, A. Feller, F. Vierendeels, and E. Dubois, “The yeast GATA factor Gat1 occu- pies a central position in nitrogen catabolite repression-sensitive gene activation,” Molec- ular and Cellular Biology, vol. 29, no. 13, pp. 3803–3815, 2009.

    [25] A. Gitter, Z. Siegfried, M. Klutstein, O. Fornes, B. Oliva, I. Simon, and Z. Bar-Joseph, “Backup in gene regulatory networks explains differences between binding and knockout results,” Molecular Systems Biology, vol. 5, no. 1, p. 276, 2009.

    [26] M. Grauslund, T. Didion, M. C. Kielland-Brandt, and H. A. Andersen, “BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae,” Biochimica et Biophysica Acta, vol. 1269, no. 3, pp. 275–280, 1995.

    [27] A. Gurvitz, “A novel circuit overrides Adr1p control during expression of Saccha- romyces cerevisiae 2-trans-enoyl-ACP reductase Etr1p of mitochondrial type 2 fatty acid synthase,” FEMS Microbiology Letters, vol. 297, no. 2, pp. 255–260, 2009.

    [28] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure, Dynamics, and Function using NetworkX,” in Proceedings of the 7th Python in Science Conference (G. Varoquaux, T. Vaught, and J. Millman, eds.), (Pasadena, CA USA), pp. 11 – 15, 2008.

    [29] J.-S. Hahn, D. W. Neef, and D. J. Thiele, “A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor,” Molecular Microbiology, vol. 60, no. 1, pp. 240–251, 2006.

    [30] J.-S. Hahn and D. J. Thiele, “Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5169–5176, 2004.

    [31] C. Harbison, D. Gordon, T. Lee, N. Rinaldi, K. Macisaac, T. Danford, N. Hannett, J. Tagne, D. Reynolds, J. Yoo, et al., “Transcriptional regulatory code of a eukaryotic genome,” Nature, vol. 431, pp. 99–104, 2004.

    [32] S. Hohmann and W. Mager, Yeast stress responses, vol. 1. Berlin: Springer Verlag, 2003.

    [33] J. W. S. Hoi and B. Dumas, “Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity,” Eukaryotic Cell, vol. 9, no. 4, pp. 480–485, 2010.

    [34] Z. Hu, P. Killion, V. Iyer, et al., “Genetic reconstruction of a functional transcriptional regulatory network,” Nature Genetics, vol. 39, pp. 683–687, 2007.

    [35] S.-S. C. Huang and E. Fraenkel, “Integrating proteomic, transcriptional, and interac- tome data reveals hidden components of signaling and regulatory networks,” Science Signaling, vol. 2, no. 81, p. ra40, 2009.

    [36] D. Hwang, A. G. Rust, S. Ramsey, J. J. Smith, D. M. Leslie, A. D. Weston, P. De Atauri, J. D. Aitchison, L. Hood, A. F. Siegel, et al., “A data integration methodology for sys- tems biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17296–17301, 2005.

    [37] D. Hwang, J. J. Smith, D. M. Leslie, A. D. Weston, A. G. Rust, S. Ramsey, P. de Atauri, A. F. Siegel, H. Bolouri, J. D. Aitchison, et al., “A data integration methodology for systems biology: experimental verification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17302–17307, 2005.

    [38] T. Ideker, T. Galitski, and L. Hood, “A new approach to decoding life: systems biology,” Annual Review of Genomics and Human Genetics, vol. 2, no. 1, pp. 343–372, 2001.

    [39] J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai, “Revealing modular organization in the yeast transcriptional network,” Nature Genetics, vol. 31, no. 4, pp. 370–377, 2002.

    [40] I. B. Jeffery, D. G. Higgins, and A. C. Culhane, “Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data,” BMC Bioinfor- matics, vol. 7, no. 1, p. 359, 2006.

    [41] S. Jelinsky, P. Estep, G. Church, and L. Samson, “Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes,” Molecular and Cellular Biology, vol. 20, pp. 8157–8167, 2000.

    [42] L.-H. Jiang, Y.-X. Li, and Q. Liu, “Reconstruction of gene regulatory networks by integrating ChIP-chip, knockout and expression data,” Progress in Biochemistry and Biophysics, vol. 37, no. 9, pp. 996–1005, 2010.

    [43] A. Joshi, T. Van Parys, Y. V. Peer, and T. Michoel, “Characterizing regulatory path motifs in integrated networks using perturbational data,” Genome Biology, vol. 11, no. 3, p. R32, 2010.

    [44] S. Junhee, K. Amit, D. Ronald, and X. Wenzhong, “Knowledge-based analysis of mi- croarrays for the discovery of transcriptional regulation relationships,” BMC Bioinfor- matics, vol. 11(Suppl 1), p. S8, 2010.

    [45] H. La¨hdesma¨ki, A. Rust, and I. Shmulevich, “Probabilistic inference of transcription factor binding from multiple data sources,” PLoS One, vol. 3, p. e1820, 2008.

    [46] R. Lee, T. Tseng, R. Chang, and Y. Tsai, Introduction to the Design and Analysis of Algorithms: a strategic approach. Columbus: McGraw-Hill, 2005.

    [47] T. Lee, N. Rinaldi, F. Robert, D. Odom, Z. Bar-Joseph, G. Gerber, N. Hannett, C. Har- bison, C. Thompson, I. Simon, et al., “Transcriptional regulatory networks in Saccha- romyces cerevisiae,” Science, vol. 298, p. 799, 2002.

    [48] P. Lefranc¸ois, G. M. Euskirchen, R. K. Auerbach, J. Rozowsky, T. Gibson, C. M. Yell- man, M. Gerstein, and M. Snyder, “Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing,” BMC Genomics, vol. 10, no. 1, p. 37, 2009.

    [49] N. M. Luscombe, M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann, and M. Gerstein, “Genomic analysis of regulatory network dynamics reveals large topological changes,” Nature, vol. 431, no. 7006, pp. 308–312, 2004.

    [50] C. Luzzani, S. Cardillo, M. Moretti, and S. Garc´ıa, “New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon- regulated transcription,” Microbiology, vol. 153, pp. 3677–3684, 2007.

    [51] G. Mannhaupt, R. Schnall, V. Karpov, I. Vetter, and H. Feldmann, “Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S protea- somal and other genes in yeast,” FEBS Letters, vol. 450, no. 1, pp. 27–34, 1999.

    [52] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Net- work motifs: simple building blocks of complex networks,” Science Signaling, vol. 298, p. 824, 2002.

    [53] M. Newman, S. Strogatz, and D. Watts, “Random graphs with arbitrary degree distri- butions and their applications,” Physical Review E, vol. 64, p. 026118, 2001.

    [54] P. Nielsen, B. Van Den Hazel, T. Didion, M. De Boer, M. Jørgensen, R. Planta, M. Kielland-Brandt, and H. Andersen, “Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2,” Molecular and General Genetics, vol. 264, no. 5, pp. 613–622, 2001.

    [55] O. Ourfali, T. Shlomi, T. Ideker, E. Ruppin, and R. Sharan, “SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments,” Bioinformatics, vol. 23, no. 13, pp. i359–i366, 2007.

    [56] W. Pan, “A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments,” Bioinformatics, vol. 18, no. 4, pp. 546–554, 2002.

    [57] Y. Pilpel, P. Sudarsanam, and G. Church, “Identifying regulatory networks by combi- natorial analysis of promoter elements,” Nature Genetics, vol. 29, pp. 153–159, 2001.

    [58] J. Qin, M. Li, P. Wang, M. Zhang, and J. Wang, “ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor,” Nucleic Acids Research, vol. 39, pp. W430–W436, 2011.

    [59] H. Redestig, D. Weicht, J. Selbig, and M. Hannah, “Transcription factor target pre- diction using multiple short expression time series from Arabidopsis thaliana,” BMC Bioinformatics, vol. 8, p. 454, 2007.

    [60] J. Reimand, J. Vaquerizas, A. Todd, J. Vilo, and N. Luscombe, “Comprehensive re- analysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets,” Nucleic Acids Research, vol. 38, pp. 4768–4777, 2010.

    [61] B. Ren, F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin, et al., “Genome-wide location and function of DNA binding proteins,” Science, vol. 290, no. 5500, pp. 2306–2309, 2000.

    [62] H. S. Rhee and B. F. Pugh, “Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution,” Cell, vol. 147, no. 6, pp. 1408–1419, 2011.

    [63] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Gu¨ ldener, G. Mannhaupt, M. Mu¨ nsterko¨ tter, et al., “The FunCat, a functional an- notation scheme for systematic classification of proteins from whole genomes,” Nucleic Acids Research, vol. 32, no. 18, pp. 5539–5545, 2004.

    [64] H. Salgado, M. Peralta-Gil, S. Gama-Castro, A. Santos-Zavaleta, L. Mun˜ iz-Rascado, J. S. Garc´ıa-Sotelo, V. Weiss, H. Solano-Lira, I. Mart´ınez-Flores, A. Medina-Rivera, et al., “RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more,” Nucleic Acids Research, vol. 41, no. D1, pp. D203–D213, 2013.

    [65] H. Salin, V. Fardeau, E. Piccini, G. Lelandais, V. Tanty, S. Lemoine, C. Jacq, and F. Devaux, “Structure and properties of transcriptional networks driving selenite stress response in yeasts,” BMC Genomics, vol. 9, no. 1, p. 333, 2008.

    [66] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, N. Friedman, et al., “Module networks: identifying regulatory modules and their condition-specific regula- tors from gene expression data,” Nature Genetics, vol. 34, pp. 166–176, 2003.

    [67] M. Sipser, Introduction to the Theory of Computation, vol. 2. Boston: Thomson Course Technology Boston, 2006.

    [68] G. K. Smyth et al., “Linear models and empirical bayes methods for assessing differ- ential expression in microarray experiments,” Statistical Applications in Genetics and Molecular Biology, vol. 3, no. 1, p. 3, 2004.

    [69] R. Sopko, D. Huang, N. Preston, G. Chua, B. Papp, K. Kafadar, M. Snyder, S. G. Oliver, M. Cyert, T. R. Hughes, et al., “Mapping pathways and phenotypes by systematic gene overexpression,” Molecular Cell, vol. 21, no. 3, pp. 319–330, 2006.

    [70] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown, D. Bot- stein, and B. Futcher, “Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization,” Molecular Biology of the Cell, vol. 9, pp. 3273–3297, 1998.

    [71] C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers, “Bi- oGRID: a general repository for interaction datasets,” Nucleic Acids Research, vol. 34, pp. D535–D539, 2006.

    [72] S. Suthram, A. Beyer, R. M. Karp, Y. Eldar, and T. Ideker, “eQED: an efficient method for interpreting eQTL associations using protein networks,” Molecular Systems Biology, vol. 4, no. 1, p. 162, 2008.

    [73] M. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A. Fernandes, N. Mira, M. Alenquer, A. Freitas, A. Oliveira, and I. Sa´-Correia, “The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 34, pp. D446–D451, 2006.

    [74] M. C. Teixeira, P. T. Monteiro, J. F. Guerreiro, J. P. Gonc¸alves, N. P. Mira, S. C. dos Santos, T. R. Cabrito, M. Palma, C. Costa, A. P. Francisco, et al., “The YEAS- TRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 42, no. D1, pp. D161–D166, 2014.

    [75] D. Ucar, A. Beyer, S. Parthasarathy, and C. Workman, “Predicting functionality of protein–DNA interactions by integrating diverse evidence,” Bioinformatics, vol. 25, pp. i137–i144, 2009.

    [76] C. Wei, Q. Wu, V. Vega, K. Chiu, P. Ng, T. Zhang, A. Shahab, H. Yong, Y. Fu, Z. Weng, et al., “A global map of p53 transcription-factor binding sites in the human genome,” Cell, vol. 124, p. 207, 2006.

    [77] D. B. West et al., Introduction to graph theory, vol. 2. Prentice hall Upper Saddle River, 2001.

    [78] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics, vol. 1, no. 6, pp. 80–83, 1945.

    [79] C. T. Workman, H. C. Mak, S. McCuine, J.-B. Tagne, M. Agarwal, O. Ozier, T. J. Begley, L. D. Samson, and T. Ideker, “A systems approach to mapping DNA damage response pathways,” Science, vol. 312, no. 5776, pp. 1054–1059, 2006.

    [80] Y. Xie, W. Pan, K. Jeong, G. Xiao, and A. Khodursky, “A Bayesian approach to joint modeling of protein–DNA binding, gene expression and sequence data,” Statistics in Medicine, vol. 29, pp. 489–503, 2010.

    [81] N. Yamamoto, Y. Maeda, A. Ikeda, and H. Sakurai, “Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae,” Eukaryotic Cell, vol. 7, no. 5, pp. 783–790, 2008.

    [82] E. Yeger-Lotem, L. Riva, L. J. Su, A. D. Gitler, A. G. Cashikar, O. D. King, P. K. Auluck, M. L. Geddie, J. S. Valastyan, D. R. Karger, et al., “Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity,” Nature Genetics, vol. 41, no. 3, pp. 316–323, 2009.

    [83] E. T. Young, K. M. Dombek, C. Tachibana, and T. Ideker, “Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8,” Journal of Biological Chemistry, vol. 278, no. 28, pp. 26146–26158, 2003.

    [84] J. Zeng, J. Yan, T. Wang, D. Mosbrook-Davis, K. T. Dolan, R. Christensen, G. D. Stormo, D. Haussler, R. H. Lathrop, R. K. Brachmann, et al., “Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins,” Nucleic Acids Research, vol. 36, no. 1, pp. e8–e8, 2008.

    [85] X. Zhou, M. Kao, and W. Wong, “Transitive functional annotation by shortest-path analysis of gene expression data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, p. 12783, 2002.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE