研究生: |
林鈺霖 Lin, Yu-Lin |
---|---|
論文名稱: |
含控制效能標準約束之機組排程模型建立與分析 Modeling and Analysis of Unit Commitment with Control Performance Constraints |
指導教授: |
張簡樂仁
Le-Ren, Chang-Chien |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 155 |
中文關鍵詞: | 機組排程 、頻率穩定度控制 、頻率控制效能標準 、廣義迴歸類神經網路 |
外文關鍵詞: | Unit commitment, Frequency Stability Control, Control Performance Standard, General Regression Neural Network |
相關次數: | 點閱:101 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
維持系統頻率的穩定與品質為電力系統運轉上一項重要的課題,台灣電力公司於民國102年在系統中導入CPS1標準藉以評估系統頻率的穩定性。本研究參考歷年研究報告及運轉資料分析台電系統影響CPS1分數的因素,歸納出數個在不同運轉時段下與CPS1分數相關性較高的頻控參數。接著採用廣義迴歸類神經架構建立能反映頻控響應的系統模型。最後將此系統模型與具頻控約束之機組排程進行整合,藉由系統模型與機組排程的相互調整,達成具頻率控制品質之機組排程。
Maintaining frequency stability and quality of the power system is an important operating issue. From the year of 2013, Taiwan Power Company (Taipower) enforced control performance standard 1 (CPS1) to assess frequency stability of the Taipower system. In this thesis, several frequency control factors that highly correlate with CPS1 score under different op-erating periods are identified by analyzing the historical data. Following that, this research adopts General Regression Neural Network (GRNN) to establish the power system model which can reflect frequency control re-sponse. Finally, the developed system model is integrated with unit com-mitment program to come up with CPS1 constraint. By going through the mutual interaction between system model and unit commitment program, the frequency constrained unit commitment can be derived to ensure fre-quency quality.
[1] G. Zhang, "New ancillary service market design to improve MW-frequency performance:reserve adequacy and resource flexibility", Iowa State University, 2015.
[2] Y. Lee, R. Baldick, "A Frequency-Constrained Stochastic Economic Dispatcg Model", Power Systems, IEEE Transactions on, Vol. 28, NO. 3, pp. 2301-2312, Aug. 2013.
[3] M. Milligan, E. Ela, D. Lew, D. Corbus, Y. Wan, B. Hodge, B. Kirby," Operational Analysis and Methods for Wind Integration Studies", Sustainable Energy, IEEE Transactions on, Vol. 3, NO. 4, pp. 612-619, Oct. 2012.
[4] E. Ibanez; I. Krad; E. Ela, "A Systematic Comparison of Operating Reserve Methodologies", The Power & Energy Society General Meeting Conference & Exposition, 2014 IEEE, vol., no., pp. 27-31, July 2014
[5] Y.V. Makarov; C. Loutan; J. Ma; P. de Mello, "Operational Impacts of Wind Generation on California Power Systems", Power Systems, IEEE Transactions on, Vol. 24, No. 2, pp. 1039-1050, May 2009
[6] 張簡樂仁、盧展南、沈正杰、林建宏、吳進忠、盧梓璇、楊亞叡、陳品佑、鄭宇軒、邱信瑋、周芳正、蔡金助、成易達、蒲冠志、廖清榮、王永富,"台電系統採用電力系統控制效能標準(CPS)之效益影響",台電工程月刊,第824期,pp. 64-89,民國106年4月
[7] I. Su, C. Tsai, W. Sung," Comparison of BP and GRNN algorithm for factory monitoring", Applied Mechanics and Materials, Trans Tech Publications, Vol. 52-54, pp. 2105-2110, Mar.2011
[8] G. BAI, Y. LI, "Application of Generalized Regression Neural Net-work in Short-term Load Forecasting", International Conference on Material Science and Civil Engineering, pp 424-430, Aug. 2016
[9] W. GAO, L. MA, Z. JIA, Y. NING, "Comparison of the GRNN and BP Neural Network for the prediction of populous (p.xeuramericana cv. "74/76") seedling water consumption", International Conference on Advanced Computer Theory and Engineering, pp.389-391, 2010
[10] D. Niu, H. Wang, H. Chen, Y. Liang, "The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction", Energies, MDPI, pp.1-20, Dec. 2017
[11] D. F. Specht, "A General Regression Neural Network ", Neural Net-work, IEEE Transactions on, Vol.2, No.6, pp. 568-576, Nov.1991
[12] D. E. Rumelhart, G. E. Hinton, R. J. Williams, "Learning representa-tions by back-propagation errors", Nature, Nature Publishing Group, Vol. 323, pp.533-536, Octorber. 1986
[13] D. F. Specht, "Probabilistic Neural Networks ", Neural Networks, Elsevier, Vol. 3, pp. 109-118, Aug. 1990
[14] A.Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet Classification Deep Couvolutional Neural Networks", Neural Information Pro-cessing Systems, pp. 1-9, Dec. 2012
[15] United States Congress, "Energy Policy Act of 2005", Aug. 8, 2005.
[16] NERC, "Reliability Standards for the Bulk Electric Systems of North America", Feb. 15, 2018
[17] NERC, "BAL-001-2 Real Power Balancing Control Performance Standard Background Document", Feb 2013.
[18] NERC, "Standard Bal-001-2 Real power Balancing Control Perfor-mance ", Apr. 16, 2015
[19] A. Wood and B. Wollenberg, "Power Generation, Operation, and Control". New York, NY: Wiley, 1996.
[20] 鄭宇軒,獨立型電力系統頻率控制輔助服務規劃,碩士論文,國立成功大學電機工程學系,民國105年7月
[21] H. Akaike, "A New Look at the Statistical Model Identification", Au-tomatic Control, IEEE Transactions on, Vol. 19, No. 6, pp. 716-723, Dec. 1974.
[22] 葉宜成,"類神經網路模式應用與實作",儒林圖書公司,格致圖書公司,2003年3月第8版
[23] 邵時俊,最佳化廣義迴歸類神經網路於預測模型之研究,碩士論文,國立台北科技大學自動化科技研究所,民國100年7月
[24] E. Parzen, "On Estimation of a Probability Density Function and Mode", Annals of Mathematical Statistics, vol. 33, no. 3, Sep. 1962, pp. 1065-1076.