簡易檢索 / 詳目顯示

研究生: 徐尚方
Hsu, Shang-Fang
論文名稱: 生成式人工智慧於數位內容行銷中消費者參與度影響之探討——人機內容共創模式之建構
Exploring Generative AI in Digital Content Marketing for Consumer Engagement: Developing AI-Human Co-Creation Strategies in Content Creation
指導教授: 楊佳翰
Yang, Chia-Han
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 創意產業設計研究所
Institute of Creative Industries Design
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 210
中文關鍵詞: 生成式AI內容消費者參與人機共創數位內容行銷品牌認知障礙
外文關鍵詞: AIGC, Consumer Engagement, AI-Human Co-Creation, Digital Content Marketing, Brand Perception Barriers
相關次數: 點閱:31下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,內容行銷領域的行銷專業人員以專業生成內容(PGC)與使用者生成內容(UGC)為主,進行消費者參與度提升的多元化策略。然而,隨著數位資訊的快速增長,透過傳統內容策略來引發消費者興趣的難度逐漸增加。本研究旨在探討品牌透過PGC及UGC策略提升消費者參與時所面臨的挑戰,並進一步探討運用人工智慧生成內容(AIGC)作為解決方案之可行性。

    本研究首先採用根本原因分析(RCA),確認降低內容行銷時消費者參與之四項核心障礙,包括強烈的商業懷疑、不明或不可靠資訊來源、高昂的審核成本,以及品牌聲譽管理困難。這些障礙共同構成了名為「品牌認知障礙」的理論架構。

    接著,本研究透過六個具代表性的品牌進行多重個案研究,探索生成式人工智慧工具在內容行銷中的應用方式。分析結果歸納出三種不同的AI與人類共創模式,分別為協作式AI增強視覺內容創作、個人化AI驅動參與,以及AI促進創意協作。本研究提出AI與人類共創模式可作為中介機制,降低品牌認知障礙的負面影響,進而提高消費者的參與程度之假設,並透過結構方程模型(SEM)針對166份有效問卷資料進行實證驗證,證實了此一假設成立。

    最後,本研究透過半結構式的專家訪談,進一步針對量化分析結果進行質性補充與深入探討。研究結果顯示,AI與人類共創模式對於降低品牌認知障礙對消費者參與的負面影響具有顯著的中介效果。此外,透過皮爾森相關分析,亦指出各種AI與人類共創模式對於消費者參與之情感、認知與行為面向的影響程度存在差異。

    本研究在理論上闡明並實證驗證了AI與人類共創模式在品牌認知障礙與消費者參與之間的中介角色;在實務上則提出具體策略與建議,協助品牌管理者有效運用AIGC,促進數位內容生態系統中消費者的互動與參與。

    In recent years, content marketing professionals have increasingly employed diverse strategies, primarily focusing on Professionally Generated Content (PGC) and User-Generated Content (UGC). However, amid the current surge of digital information, capturing consumer interest through traditional content strategies has become more challenging. This research addresses the difficulties brands encounter in enhancing consumer engagement via digital content marketing strategies that utilize PGC and UGC. It also explores the potential of employing Artificial Intelligence-Generated Content (AIGC) as a strategic solution.

    The study begins with a Root Cause Analysis (RCA) to identify four main barriers to effective consumer engagement strategies: aggressive commercial skepticism, unreliable and unknown sources, high moderation costs, and challenges in reputation management. Collectively, these barriers form a theoretical construct known as "Brand Perception Barriers."

    A multiple-case study involving six representative brands’ marketing campaigns was conducted to explore the use of generative AI tools in content marketing. This analysis identified three distinct modes of AI-Human Co-Creation: Collaborative AI-Enhanced Visual Content Creation, Personalized AI-Driven Engagement, and AI-Facilitated Creative Collaboration. The study hypothesized that these modes of AI-Human Co-Creation could mediate the adverse effects of Brand Perception Barriers, thereby enhancing consumer engagement. These hypotheses were empirically validated using Structural Equation Modeling (SEM) with data from 166 valid questionnaire responses, confirming the proposed mediating relationships.

    Ultimately, semi-structured expert interviews provided qualitative insights that further contextualize the quantitative findings. The results demonstrate that AI-Human Co-Creation modes significantly mediate the adverse effects of Brand Perception Barriers on consumer engagement. Additionally, Pearson correlation analysis revealed that each AI-Human Co-Creation mode influences consumer engagement's emotional, cognitive, and behavioral dimensions in distinct ways.

    This study contributes theoretically by clarifying and empirically supporting the mediating role of AI-Human Co-Creation modes in the relationship between Brand Perception Barriers and consumer engagement. From a practical perspective, it provides strategic guidance and actionable recommendations for brand managers to effectively leverage AIGC, thereby enhancing consumer engagement within digital content ecosystems.

    ABSTRACT i 摘要 iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS vi LIST OF TABLES x LIST OF FIGURES xi LIST OF ABBREVIATIONS xiii CHAPTER 1 INTRODUCTION 1 1.1 Research Background and Motivation 1 1.1.1 The Growing Impact of Content Marketing and the Role of Novel Technology 1 1.1.2 The Emergence of AI in Content Marketing Practice 4 1.1.3 Generative AI and the Transformation of Consumer Engagement Strategies 6 1.2 Problem Statement 8 1.2.1 The Evolution of Web and Content Contributors: From PGC to UGC to AIGC 8 1.2.2 Challenges in Consumer Engagement with Current Content Strategies 9 1.2.3 Generative AI as a Strategic Intermediary in Consumer Engagement 11 1.3 Research Questions and Objectives 13 1.4 Rationale and Significance of Study 15 1.4.1 Rationale of the Research 15 1.4.2 Significance of the Research 16 1.5 Dissertation Organization and Research Design 17 1.5.1 Phase I: Root Cause Analysis (RCA) 17 1.5.2 Phase II: Case Study Analysis of AI-Human Co-Creation Models 17 1.5.3 Phase III: Questionnaire Design and Expert Interview 18 CHAPTER 2 Literature Review 20 2.1 Evolution and Definition of Digital Content Marketing 20 2.1.1 Content Creation as the Basis of Digital Content Marketing 22 2.1.2 The Evolution of Professional and User-Generated Content 24 2.1.3 The Rise of AIGC in Digital Content Creation 25 2.2 Content Co-Creation in Marketing 27 2.2.1 Technological Drivers of AI-Human Co-Creation Transformation 29 2.2.2 AI-Human Co-Creation: Transforming Content Ideation 30 2.3 Consumer Engagement: Dimensions and Antecedents 32 2.3.1 Consumer Engagement: Cognition, Behavior, and Emotion 33 2.3.2 Measurement of Consumer Engagement 34 2.4 Strategic Applications of Generative AI in Digital Marketing 37 2.4.1 Use Cases and Tactical Integration of GAI in Content Strategies 38 2.4.2 Optimizing Digital Content Marketing through AI-Human Collaboration 40 2.5 Gaps in the Literature and Research Positioning 41 2.5.1 Three research gaps emerge 42 2.5.2 Positioning of This Research 43 CHAPTER 3 Research Method 44 3.1 Research Methods Applied 44 3.1.1 Root Cause Analysis (RCA) 44 3.1.2 Fishbone Diagram in Root Cause Analysis 46 3.1.3 Case Study Method 48 3.1.4 Questionnaire and Survey Method 51 3.1.5 Questionnaire Design and Structural Equation Modeling Approach 52 3.1.6 In-Depth Interviews: Qualitative Validation Across Research Stages 56 3.2 Research Framework 60 3.2.1 Hypotheses Development 62 3.3 Research Data Collection 63 3.3.1 Root Cause Analysis (RCA) Data Collection 64 3.3.2 Case Study Data Collection 64 3.3.3 Questionnaire Design and Distribution 64 3.3.4 In-Depth Expert Interview Procedure 69 3.4 Concept of Reliability and Validity in the Study 70 3.4.1 Reliability: 70 3.4.2 Validity: 71 CHAPTER 4 Phase I RCA: Brand Perception Barriers 72 4.1 Identifying the Challenges for the PGC and PUGC as a Content Marketing Strategy to Engage Consumers 72 4.2 Determine Improvement Measures 75 4.3 Short Conclusion 77 CHAPTER 5 Phase Ⅱ Case Study: How Does AIGC Enhance Consumer Engagement? 79 5.1 Case Selection Criteria 79 5.2 Cases and Descriptions 80 5.2.1 Case Introduction 80 5.3 Case Analysis 88 5.3.1 Defining AI-Human Co-Creation Modes in Content Marketing 88 5.3.2 The Role of AI Tools in Enhancing Consumer Engagement: A Comparative Analysis Without AI 90 5.4 Short Conclusion 94 CHAPTER 6 Phase Ⅲ: Data Analysis and In-depth interview 96 6.1 Demographics 97 6.2 Validity and Reliability Assessment 114 6.2.1 Validity Testing: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) 114 6.2.2 Reliability 116 6.2.3 Composite Reliability and Convergent Validity (CR / AVE) 117 6.3 Structural Model and Hypothesis Testing 121 6.3.1 SEM: Direct and Indirect Effects 121 6.3.2 Correlation between AI-Human Co-Creation Modes and Brand Perception Barriers 123 6.3.3 Correlation between AI-Human Co-Creation Modes and Consumer Engagement Dimensions 125 6.3.4 Correlation between Brand Perception Barriers and Consumer Engagement Dimensions 127 6.4 Integration of Quantitative Findings and Expert Validation 129 6.4.1 Mapping AI-Human Co-Creation Modes to Brand Barriers and Engagement Outcomes 129 6.4.2 Enhancing Consumer Engagement through AI-Human Co-Creation 143 6.5 Short Conclusion 154 CHAPTER 7 Conclusion and Suggestions 156 7.1 Discussion and Conclusion 156 7.1.1 Ontological Reconfiguration of Content Marketing: The Transformative Role of Generative AI 156 7.1.2 Redefining the Epistemology of Content Engagement: GAI as a Co-Evolutionary Agent 158 7.2 Research Implication 159 7.2.1 Implication for Theory 160 7.2.2 Implication for Practice 161 7.3 Limitations and Directions for Future Research 162 REFERENCES 164 Appendix A Questionnaire 188 VITA 195

    江季芸、卓芳伃、劉修妤、朱家儀、謝佳宏(2020). 社群媒體之體驗行銷研究-以內容行銷為基礎. 管理資訊計算,9().84-96。 [Chiang, C.Y., Cho, F.Y., Liu, H.Y., Chu, C.Y., & Hsieh, C.H. (2020). Examining Strategic Experience Module for Social Media - based on Content Marketing. Management Information Computing. 9(), 84-96. doi: https://doi.org/10.6285/MIC.202008/SP_01_9.0009]
    李白楊、白云、詹希旎、李綱 (2023). 人工智能生成内容 (AIGC) 的技術特徵與形態演進. 圖書情報知識, 40(1), 66-74。 [Li, B. Y., Bai, Y., Zhan, X. N., & Li, G. (2023). The Technical Features and Aromorphosis of Artificial Intelligence Generated Content (AIGC). Documentation, Information & Knowledge. 40(1), 66-74. doi: https://doi.org/10.13366/j.dik.2023.01.066]
    Academy Films. (2023). Coca-Cola Celebrates Uplifting Refreshment with Striking Film Directed by Henry Scholfield. Retrieved from: https://lbbonline.com/news/coca-cola-celebrates-uplifting-refreshment-with-striking-film-directed-by-henry-scholfield
    Adams, P. (2024). Consumers call AI-generated video ads annoying, confusing, per NIQ. INDUSTRYDIVE. Retrieved from: https://www.marketingdive.com/news/consumer-perceptions-generative-ai-in-marketing-openai-sora/735761/
    Adejimi, A., Oyediran, O. S., & Ogunsanmi, E. B. (2010). Employing a qualitatively structured questionnaire in evaluating ICT impact on Nigerian ‘construction chain integration’. The Built & Human Environment Review, 3(1), 49-62.
    AIContentfy team. (2023, Nov. 6th). The impact of user-generated content on customer acquisition. Retrieved from: https://aicontentfy.com/en/blog/impact-of-user-generated-content-on-customer-acquisition
    Aira & Verblio. (2022). The future of AI in content marketing. Retrieved from: https://aira.net/future-of-ai-content-marketing/
    Al-Dmour, H. H., Ali, W. K., & Al-Dmour, R. H. (2019). The relationship between customer engagement, satisfaction, and loyalty. International Journal of Customer Relationship Marketing and Management (IJCRMM), 10(2), 35-60. doi: https://doi.org/10.4018/IJCRMM.2019040103
    Al-Emran, M., Mezhuyev, V., Kamaludin, A. (2019). PLS-SEM in Information Systems Research: A Comprehensive Methodological Reference. In: Hassanien, A., Tolba, M., Shaalan, K., Azar, A. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018. AISI 2018. Advances in Intelligent Systems and Computing, vol 845. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-99010-1_59
    Alfred, A. (2025, Apr. 22th). The Advantages and Disadvantages of Using User-Generated Content. Retrieved from: https://www.ampfluence.com/advantages-and-disadvantages-of-user-generated-content/
    Algesheimer, R., Dholakia, U. M., & Herrmann, A. (2005). The social influence of brand community: Evidence from European car clubs. Journal of Marketing, 69(3), 19-34. doi: https://doi.org/10.1509/jmkg.69.3.19.66363
    Ampfluence Team (2022. Oct. 24). The Advantages and Disadvantages of Using User-Generated Content. Retrieved from: https://www.ampfluence.com/advantages-and-disadvantages-of-user-generated-content/
    Anisin, A. (2023. Aug. 17). Generative AI For Content Creation: How Marketers Can Use It. Forbes. Retrived from: https://www.forbes.com/sites/theyec/2023/08/17/generative-ai-for-content-creation-how-marketers-can-use-it/?sh=2206251a619e
    Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019). Customer relationship management and big data enabled: Personalization & customization of services. Applied Computing and Informatics, 15(2), 94-101. doi: https://doi.org/10.1016/j.aci.2018.05.004
    Aroyeun, T. F., Adefulu, A. D., & Asikhia, O. U. (2018). Effect of competitive aggressiveness on competitive advantage of selected small and medium scale enterprises in Ogun State Nigeria. European Journal of Business and Management, 10(35), 125-135.
    Ashley, C., & Tuten, T. (2015). Creative strategies in social media marketing: An exploratory study of branded social content and consumer engagement. Psychology & Marketing, 32(1), 15-27. doi: https://doi.org/10.1002/mar.20761
    Bahari, S. F. (2010). Qualitative versus quantitative research strategies: contrasting epistemological and ontological assumptions. Sains Humanika, 52(1). doi: https://doi.org/10.11113/sh.v52n1.256
    Bai, L., & Yan, X. (2020). Impact of firm-generated content on firm performance and consumer Engagement: Evidence from Social Media in China. Journal of Electronic Commerce Research, 21(1), 56-74.
    Balamurugan, M. (2024). AI-Driven Adaptive Content Marketing: Automating Strategy Adjustments for Enhanced Consumer Engagement. International Journal For Multidisciplinary Research, 6(5). doi: https://doi.org/10.36948/ijfmr.2024.v06i05.27940
    Baldus, B. J., Voorhees, C., & Calantone, R. (2015). Online brand community engagement: Scale development and validation. Journal of Business Research, 68(5), 978-985. doi: https://doi.org/10.1016/j.jbusres.2014.09.035
    Barari, M., Ross, M., Thaichon, S., & Surachartkumtonkun, J. (2021). A meta‐analysis of customer engagement behaviour. International Journal of Consumer Studies, 45(4), 457-477. doi: https://doi.org/10.1111/ijcs.12609
    Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. doi: https://doi.org/10.1037/0022-3514.51.6.1173
    Batterton, K. A., & Hale, K. N. (2017). The Likert scale what it is and how to use it. Phalanx, 50(2), 32-39. doi: https://www.jstor.org/stable/26296382
    Bertrand, M., Karlan, D., Mullainathan, S., Shafir, E., & Zinman, J. (2010). What's advertising content worth? Evidence from a consumer credit marketing field experiment. The Quarterly Journal of Economics, 125(1), 263-306. doi: https://doi.org/10.1162/qjec.2010.125.1.263
    Bhattarai, A. (2023). Exploring customer engagement through generative AI innovative strategies in digital marketing campaigns. Quarterly Journal of Emerging Technologies and Innovations, 8(12), 1-9.
    Bilgihan, A., Dogru, T., Hanks, L., Line, N., & Mody, M. (2024). The GAI marketing model: a conceptual framework and future research directions. International Journal of Hospitality Management, 123, 103929. doi: https://doi.org/10.1016/j.ijhm.2024.103929
    Bradley, S., Ashley, S., & Park, Y. (2024, May). Build consumer confidence to boost your bottom line. Think with Google. Retrieved from: https://www.thinkwithgoogle.com/consumer-insights/consumer-journey/build-confident-consumers-to-improve-metrics/
    Brassard, M., & Ritter, D. (1994). The memory jogger II: A pocket guide of tools for continuous improvement & effective planning. Goal/Qpc.
    Braun, C., Hadwich, K., & Bruhn, M. (2017). How do different types of customer engagement affect important relationship marketing outcomes? An empirical analysis. Journal of Customer Behaviour, 16(2), 111-144. doi: https://doi.org/10.1362/147539217X14909732699525
    Brodie, R. J., Hollebeek, L. D., Jurić, B., & Ilić, A. (2011). Customer engagement: Conceptual domain, fundamental propositions & implications for research in service marketing. Journal of Service Research, 14(3), 252–271. doi: https://doi.org/10.1177/1094670511411703
    Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
    Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230-258. doi: https://doi.org/10.1177/0049124192021002005
    Bruhn, M., Schoenmueller, V., & Schäfer, D. B. (2012). Are social media replacing traditional media in terms of brand equity creation?. Management Research Review, 35(9), 770-790. doi: https://doi.org/10.1108/01409171211255948
    Cai, Z. (2019). A comparative study of Pgc and Ugc modes in video websites based on mirror theory—Taking “Iqiyi” and “Tencent Video” as an example. Frontiers in Art Research, 1(6). doi: https://doi.org/10.25236/FAR.2019.010602
    Calder, B. J., Isaac, M. S., & Malthouse, E. C. (2016). How to capture consumer experiences: A context-specific approach to measuring engagement: Predicting consumer behavior across qualitatively different experiences. Journal of advertising research, 56(1), 39-52. doi: https://doi.org/10.2501/JAR-2015-028
    Calder, B. J., Malthouse, E. C., & Schaedel, U. (2009). An experimental study of the relationship between online engagement and advertising effectiveness. Journal of Interactive Marketing, 23(4), 321-331. doi: https://doi.org/10.1016/j.intmar.2009.07.002
    Campero, A., Vaccaro, M., Song, J., Wen, H., Almaatouq, A., & Malone, T. W. (2022). A test for evaluating performance in human-computer systems. arXiv preprint arXiv:2206.12390. doi: https://doi.org/10.48550/arXiv.2206.12390
    Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023). A comprehensive survey of AI-generated content (AIGC): A history of generative AI from GAN to ChatGPT. arXiv preprint arXiv:2303.04226. doi: https://doi.org/10.48550/arXiv.2303.04226
    Chang, X, H. (2023). Trip.com Collaborates with Miaoya Camera to Launch a Digital Art Advertising Campaign, Enabling Cross-Dimensional Travel. Retrieved from: https://www.4anet.com/p/11v7974a765b459b (by 2024.10.17).
    Zhang, C., Zhang, C., Li, C., Qiao, Y., Zheng, S., Dam, S. K., Zhang, M., Kim, J. U., Kim, S. T., Choi, J., Park, G.-M., Bae, S.-H., Lee, L.-H., Hui, P., Kweon, I. S., & Hong, C. S. (2022). One small step for generative ai, one giant leap for agi: A complete survey on chatgpt in aigc era.
    Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25, 3443-3463. doi: https://doi.org/10.1007/s10639-020-10159-7
    Chen, X., Li, S., Li, H., Jiang, S., Qi, Y., & Song, L. (2019, May). Generative adversarial user model for reinforcement learning based recommendation system. In International Conference on Machine Learning (pp. 1052-1061). PMLR.
    Chen, Y., Wang, Y., Kirschen, D., & Zhang, B. (2018). Model-free renewable scenario generation using generative adversarial networks. IEEE Transactions on Power Systems, 33(3), 3265-3275. doi: https://doi.org/10.1109/TPWRS.2018.2794541
    Clarisó, R., & Cabot, J. (2023, October). Model-driven prompt engineering. In 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems (MODELS) (pp. 47-54). IEEE. doi: https://doi.org/10.1109/MODELS58315.2023.00020
    Clark, E., Ross, A. S., Tan, C., Ji, Y., & Smith, N. A. (2018, March). Creative writing with a machine in the loop: Case studies on slogans and stories. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (pp. 329-340). doi: https://doi.org/10.1145/3172944.3172983
    Click Awards. (2024). Congratulations to Dentsu X for winning one silver and three merit awards with Carrefour's AI Memory Code! Retrieved from: http://jz.timesawards.com.tw/Home/NewestDynamicContent?id=A20240105173424&parentid=20200518103211&liname=3 (by 2024.10.17).
    Coca-Cola. (2023. Dec. 9). Coca‑Cola® Creations Imagines Year 3000 With New Futuristic Flavor and AI-Powered Experience. Retrieved from: https://www.coca-colacompany.com/media-center/coca-cola-creations-imagines-year-3000-futuristic-flavor-ai-powered-experience
    De Costa, F., & Abd Aziz, N. (2021). The effects of user generated content and firm generated content on millennials' purchase intention of Shariah-compliant stocks. Jurnal Pengurusan, 62, 27-36. doi: https://doi.org/10.17576/pengurusan-2021-62-03
    De Cremer, D., Bianzino, N.M. & Falk, B. (2023. Apr. 13), “How generative AI could disrupt creative work”, Harvard Business Review, Retrived from: https://hbr.org/2023/04/how-generative-ai-could-disrupt-creative-work#:%7E:text=In%20this%20scenario%2C%20generative%20AI,less%20new%20art%20and%20content
    de Oliveira, M. J., Huertas, M. K. Z., & Lin, Z. (2016). Factors driving young users' engagement with Facebook: Evidence from Brazil. Computers in Human Behavior, 54, 54-61. doi: https://doi.org/10.1016/j.chb.2015.07.038
    Denzin, N. K. (1978). The Research Act: A Theoretical Introduction to Sociological Methods. New York; London: McGraw-Hill.
    Dijkmans, C., Kerkhof, P., & Beukeboom, C. J. (2015). A stage to engage: Social media use and corporate reputation. Tourism Management, 47, 58-67. doi: https://doi.org/10.1016/j.tourman.2014.09.005
    Doggett, A. M. (2005). Root cause analysis: a framework for tool selection. Quality Management Journal, 12(4), 34-45. doi: https://doi.org/10.1080/10686967.2005.11919269
    Dolan, R., Conduit, J., Frethey-Bentham, C., Fahy, J. & Goodman, S. (2019), Social media engagement behavior: a framework for engaging customers through social media content, European Journal of Marketing, 53(10), 2213-2243. doi: https://10.1108/EJM-03-2017-0182
    Dorigo, M., & Stutzle, T. (2004). Ant Colony Optimization. MIT Press, Cambridge, MA.
    Du, D., Zhang, Y., & Ge, J. (2023, July). Effect of AI generated content advertising on consumer engagement. In International conference on human-computer interaction (pp. 121-129). Cham: Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-36049-7_9
    Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., Carter, L., & Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. doi: https://doi.org/10.1016/j.ijinfomgt.2023.102642
    Ekolu, S. O., & Quainoo, H. (2019). Reliability of assessments in engineering education using Cronbach’s alpha, KR and split-half methods. Global Journal of Engineering Education, 21(1), 24-29.
    Emirbayer, M., & Mische, A. (1998). What is agency?. American journal of sociology, 103(4), 962-1023. doi: https://doi.org/10.1086/231294
    Fan, N., Li, X., Liu, C., & Fan, Z. P. (2025). The Power of AI-Generated Content: Evidence From the Peer-to-Peer Accommodation Market. Journal of Travel Research, 00472875251332951. doi: https://doi.org/10.1177/00472875251332951
    Ferreira, M., Zambaldi, F., & Guerra, D. D. S. (2020). Consumer engagement in social media: scale comparison analysis. Journal of Product & Brand Management, 29(4), 491-503. doi: https://doi.org/10.1108/JPBM-10-2018-2095
    Flanagin, A. J., & Metzger, M. J. (2008). The credibility of volunteered geographic information. GeoJournal, 72, 137-148. doi: https://doi.org/10.1007/s10708-008-9188-y
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
    Fredendall, L. D., Patterson, J. W., Lenhartz, C., & Mitchell, B. C. (2002). What should be changed. Quality Progress, 35(1), 50-59.
    Frow, P., Payne, A., & Storbacka, K. (2010). Co-creation: A Framework for Collaborative Engagement. I Proceedings of the 18th International Colloquium in Relationship Marketing, Henley Business School, University of Reading, UK, September 27-30, 2010.
    Gan, W., Ye, Z., Wan, S., & Yu, P. S. (2023, April). Web 3.0: The future of internet. In Companion Proceedings of the ACM Web Conference 2023 (pp. 1266-1275). doi: https://doi.org/10.1145/3543873.3587583
    Gao, A. (2024). From PGC to UGC to AIGC: Change of content paradigm. In SHS Web of Conferences (Vol. 199, p. 03017). EDP Sciences. doi: https://doi.org/10.1051/shsconf/202419903017
    Geertz, C. (2008). Thick description: Toward an interpretive theory of culture. In The Cultural Geography Reader (pp. 41-51). Routledge.
    Geng, R., Wang, S., Chen, X., Song, D., & Yu, J. (2020). Content marketing in ecommerce platforms in the internet celebrity economy. Industrial Management & Data Systems, 120(3), 464–485. doi: https://doi.org/10.1108/imds-05-2019-0270
    Gerring, J. (2004). What is a case study and what is it good for?. American Political Science Review, 98(2), 341-354. doi: https://doi.org/10.1017/S0003055404001182
    Grönroos, C. (2008). Service logic revisited: who creates value? And who co‐creates?. European Business Review, 20(4), 298-314. doi: https://doi.org/10.1108/09555340810886585
    Guo, B., Zhang, X., Wang, Z., Jiang, M., Nie, J., Ding, Y., Yue, J., & Wu, Y. (2023). How close is chatgpt to human experts? comparison corpus, evaluation, and detection. arXiv preprint arXiv:2301.07597.
    Guoming, Y., & Fan, L. (2023). The Revolution of Content Paradigm: Eco-level Evolution of Content Production Under The Wave of Generative AI. The Press., 23-30.
    Gupta, A. K., Katiyar, D., & Goel, G. (2022). Web 3.0 and its reflections on the future of E-learning. Int. J. Res. Appl. Sci. Eng. Technol, 10(4), 507-512. doi: https://doi.org/10.22214/ijraset.2022.41293
    Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (p. 197). Springer Nature.
    Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. doi: https://doi.org/10.1108/EBR-11-2018-0203
    Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long range planning, 45(5-6), 320-340. doi: https://doi.org/10.1016/j.lrp.2012.09.008
    Hanaysha, J. R. (2022). An examination of social media advertising features, brand engagement and purchase intention in the fast food industry. British Food Journal, 124(11), 4143-4160. doi: https://doi.org/10.1108/BFJ-08-2021-0907
    Hargittai, E., & Walejko, G. (2008). The participation divide: Content creation and sharing in the digital age. Information, Community and Society, 11(2), 239-256. doi: https://doi.org/10.1080/13691180801946150
    Hasan, M. R., Chowdhury, N. I., Rahman, M. H., Syed, M. A. B., & Ryu, J. (2024). Understanding AI Chatbot adoption in education: PLS-SEM analysis of user behavior factors. Computers in Human Behavior: Artificial Humans, 2(2), 100098. doi: https://doi.org/10.1016/j.chbah.2024.100098
    Hassan, S., Nadzim, S. Z. A., & Shiratuddin, N. (2015). Strategic use of social media for small business based on the AIDA model. Procedia-Social and Behavioral Sciences, 172, 262-269. doi: https://doi.org/10.1016/j.sbspro.2015.01.363
    Hatch, M. J., & Schultz, M. (2010). Toward a theory of brand co-creation with implications for brand governance. Journal of Brand Management, 17(8), 590-604. doi: https://doi.org/10.1057/bm.2010.14
    Hautz, J., Füller, J., Hutter, K., & Thürridl, C. (2014). Let users generate your video ads? The impact of video source and quality on consumers’ perceptions and intended behaviors. Journal of Interactive Marketing, 28(1), 1-15. doi: https://doi.org/10.1016/j.intmar.2013.06.003
    Heale, R., & Twycross, A. (2018). What is a case study?. Evidence-based nursing, 21(1), 7-8. doi: https://doi.org/10.1136/eb-2017-102845
    Herriott, R. E., & Firestone, W. A. (1983). Multisite qualitative policy research: Optimizing description and generalizability. Educational Researcher, 12(2), 14-19. doi: https://doi.org/10.3102/0013189X012002014
    Hesmondhalgh, D. (2010). User-generated content, free labour and the cultural industries. Ephemera, 10(3/4), 267-284.
    Hollebeek, L. D. (2011a). Demystifying customer brand engagement: Exploring the loyalty nexus. Journal of Marketing Management, 27(7-8), 785-807. doi: https://doi.org/10.1080/0267257X.2010.500132
    Hollebeek, L. (2011b). Exploring customer brand engagement: definition and themes. Journal of Strategic Marketing, 19(7), 555-573. doi: https://doi.org/10.1080/0965254X.2011.599493
    Hollebeek, L. D., & Chen, T. (2014). Exploring positively-versus negatively-valenced brand engagement: a conceptual model. Journal of Product & Brand Management, 23(1), 62-74. doi: https://doi.org/10.1108/JPBM-06-2013-0332
    Hollebeek, L. D., & Macky, K. (2019). Digital content marketing's role in fostering consumer engagement, trust, and value: Framework, fundamental propositions, and implications. Journal of Interactive Marketing, 45(1), 27-41. doi: https://doi.org/10.1016/j.intmar.2018.07.003
    Hollebeek, L. D., Glynn, M. S., & Brodie, R. J. (2014). Consumer brand engagement in social media: Conceptualization, scale development and validation. Journal of Interactive Marketing, 29(2), 149–165. doi: https://doi.org/10.1016/j.intmar.2013.12.002
    Holliman, G., & Rowley, J. (2014). Business to business digital content marketing: marketers’ perceptions of best practice. Journal of Research in Interactive Marketing, 8(4), 269-293. doi: https://doi.org/10.1108/JRIM-02-2014-0013
    Houde, S., Liao, V., Martino, J., Muller, M., Piorkowski, D., Richards, J., ... & Zhang, Y. (2020). Business (mis) use cases of generative ai. arXiv preprint arXiv:2003.07679. doi: https://doi.org/10.48550/arXiv.2003.07679
    Hsu, S. F., & Liou, S. (2021, December). Artificial Intelligence Impact on Digital Content Marketing Research. In 2021 9th International Conference on Orange Technology (ICOT) (pp. 1-4). IEEE. doi: https://doi.org/10.1109/ICOT54518.2021.9680666
    Huggins, K. A., & Hansen, J. D. (2023). The Digital Engine Model: Generating Leads Through the Application of DCM and Inbound Marketing. Journal of Applied Marketing Theory, 10(2), 10-29. doi: https://doi.org/10.20429/jamt.2023.100203
    Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation interfaces. In User centered system design (pp. 87-124). CRC Press.
    Hutter, K., Hautz, J., Dennhardt, S., & Füller, J. (2013). The impact of user interactions in social media on brand awareness and purchase intention: the case of MINI on Facebook. Journal of product & brand management, 22(5/6), 342-351. doi: https://doi.org/10.1108/JPBM-05-2013-0299
    Ind, N., & Coates, N. (2013). The meanings of co‐creation. European Business Review, 25(1), 86-95. doi: https://doi.org/10.1108/09555341311287754
    Ishikawa, K. (1982). Guide to quality control. Tokyo, Japan.
    Jacob, M. E., & Johnson, J. (2020). Can Digital Content Marketing (DCM) Be Used to Influence Attitude and Purchase Intention of Consumers?. In 4th International Conference on Marketing, Technology & Science 2020Indian Institute of Management Kozhikode (pp. 2-6).
    Järvinen, J., & Taiminen, H. (2016). Harnessing marketing automation for B2B content marketing. Industrial Marketing Management, 54, 164-175. doi: https://doi.org/10.1016/j.indmarman.2015.07.002
    Johnson, J. M. (2001). 5 in-depth interviewing. In Handbook of interview research (pp. 103-119). SAGE Publications, Inc. doi: https://doi.org/10.4135/9781412973588.n8
    Johnson, J. M., & Rowlands, T. (2012). The interpersonal dynamics of in-depth interviewing. The SAGE handbook of interview research: The complexity of the craft, 99-113.
    Johnson, S. (2011). Where good ideas come from: The natural history of innovation. Penguin.
    Kaiser, H. F. (1974). An index of factorial simplicity. psychometrika, 39(1), 31-36. doi: https://doi.org/10.1007/BF02291575
    Kajander, H. (2019). Challenges of a Content Creator in the Era of Digital Marketing.
    Kan, Y. R., Liu, Y., Ananthakrishnan, U. M., & Tan, Y. (2024). One size fits all? Informational accessibility and inclusivity in online platforms. Informational Accessibility and Inclusivity in Online Platforms (May 28, 2024). doi: http://dx.doi.org/10.2139/ssrn.4844630
    Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59-68. doi: https://doi.org/10.1016/j.bushor.2009.09.003
    Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68. doi: https://doi.org/10.1016/j.bushor.2009.09.003
    Kärreman, D., & Rylander, A. (2008). Managing meaning through branding—The case of a consulting firm. Organization Studies, 29(1), 103-125. doi: https://doi.org/10.1177/0170840607084573
    Kasilingam, D., & Krishna, R. (2022). Understanding the adoption and willingness to pay for internet of things services. International Journal of Consumer Studies, 46(1), 102-131. doi: https://doi.org/10.1111/ijcs.12648
    Kaspar, K., Weber, S. L., & Wilbers, A. K. (2019). Personally relevant online advertisements: Effects of demographic targeting on visual attention and brand evaluation. PloS One, 14(2), e0212419. doi: https://doi.org/10.1371/journal.pone.0212419
    Kee, A. W. A., & Yazdanifard, R. (2015). The Review of Content Marketing as a New Trend in Marketing Practices. International Journal of Management, Accounting & Economics, 2(9), 1055-1064.
    Kim, J. (2012). The institutionalization of YouTube: From user-generated content to professionally generated content. Media, Culture & Society, 34(1), 53-67. doi: https://doi.org/10.1177/0163443711427199
    Kim, J., & Choi, G. (2024). Assessing the Impact of Generative Artificial Intelligence on Customer Engagement in Business-to-Customer Scenarios. Asia-pacific Journal of Convergent Research Interchange, 10(2), 89-104.
    Kingma, D. P., & Welling, M. (2022). Auto-Encoding Variational Bayes. arXiv: arXiv:1312.6114. doi: https://doi.org/10.48550/arXiv.1312.6114
    Kock, N. (2018). Minimum sample size estimation in PLS-SEM: an application in tourism and hospitality research. In Applying partial least squares in tourism and hospitality research (pp. 1-16). Emerald Publishing Limited. doi: https://doi.org/10.1108/978-1-78756-699-620181001
    Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods. Information Systems Journal, 28(1), 227-261. doi: https://doi.org/10.1111/isj.12131
    Koiso-Kanttila, N. (2004). Digital content marketing: a literature synthesis. Journal of Marketing Management, 20(1-2), 45-65. doi: https://doi.org/10.1362/026725704773041122
    Kossymbayeva, Z., & Temirbulatova, D. (2024). AI-Driven Marketing Advancements: the perspective of AI implementation in Kazakhstani digital marketing (Bachelor's thesis, International School of Economics Maqsut Narikbayev University, Astana).
    Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.
    Kshetri, N. (2023). Generative artificial intelligence in marketing. IT Professional, 25(5), 71-75. doi: https://doi.org/10.1109/MITP.2023.3314325
    Kumar, Viswanathan, and Anita Pansari. (2016). "Competitive advantage through engagement." Journal of Marketing Research, 53(4), 497-514. doi: https://doi.org/10.1509/jmr.15.0044
    Lalmas, M., O'Brien, H., & Yom-Tov, E. (2022). Measuring user engagement. Switzerland: Springer Nature. p8. doi: https://doi.org/10.1007/978-3-031-02289-0
    Lamberton, C., & Stephen, A. T. (2016). A thematic exploration of digital, social media, and mobile marketing: Research evolution from 2000 to 2015 and an agenda for future inquiry. Journal of Marketing, 80(6), 146-172. doi: https://doi.org/10.1509/jm.15.0415
    Lane Keller, K. (2014). Designing and implementing brand architecture strategies. Journal of Brand Management, 21(9), 702-715. doi: https://doi.org/10.1057/bm.2014.38
    Lankes, R. D. (2008). Credibility on the internet: shifting from authority to reliability. Journal of documentation, 64(5), 667-686. doi: https://doi.org/10.1108/00220410810899709
    Larsson, G., & Lindecrantz, V. (2023). How an AI colleague affect the experiance of content creation (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-61692
    Laurel, B. (1993). Computers as theatre (Reprint edition).
    Leanneyanglab. (2023). What is AIGC? The Coca-Cola brand campaign explores AI-generated content, crafting digital art magic!. Retrieved from: https://leanneyanglab.com/aigc/
    Lee, D., Hosanagar, K., & Nair, H. S. (2018). Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science, 64(11), 5105-5131. doi: https://doi.org/10.1287/mnsc.2017.2902
    Lee, P, R. (2024). 85% of the work completed by AI! Toys "R" Us uses Sora to create advertisements, attracting customers through new technology. Retrieved from: https://fc.bnext.com.tw/articles/view/3496
    Legard, R., Keegan, J., & Ward, K. (2003). In-depth interviews. Qualitative Research Practice: A Guide for Social Science Students and Researchers, 6(1), 138-169.
    Li, Y., Wang, J., Dai, X., Wang, L., Yeh, C.C. M., Zheng, Y., Zhang, W., & Ma, K.L. (2023). How does attention work in vision transformers? A visual analytics attempt. IEEE Transactions on Visualization and Computer Graphics, 29(6), 2888-2900. doi: https://doi.org/10.1109/TVCG.2023.3261935
    Liu, H., W. (2025). Social Media Content Analysis and Customer Engagement Prediction. Journal of Management and Business Research. 42(1).1-44. doi: https://doi.org/10.6504/JMBR.202503_42(1).0001
    Lopes, A. R., & Casais, B. (2022). Digital content marketing: Conceptual review and recommendations for practitioners. Academy of Strategic Management Journal, 21(2), 1-17.
    Lou, C., Xie, Q., Feng, Y., & Kim, W. (2019). Does non-hard-sell content really work? Leveraging the value of branded content marketing in brand building. Journal of Product & Brand Management, 28(7), 773–786. doi: https://doi.org/10.1108/JPBM-07-2018-1948
    Luo, D. (2025). Ximalaya FM: Empowering the Sound Economy and the Evolution of China's Audio Industry. In Cases on Chinese Unicorns and the Development of Startups (pp. 347-364). IGI Global. doi: https://doi.org/10.4018/979-8-3693-2921-4.ch020
    Lusch, R. F., & Vargo, S. L. (2006). Service-dominant logic: reactions, reflections and refinements. Marketing Theory, 6(3), 281-288. doi: https://doi.org/10.1177/1470593106066781
    Lyu, Y., Wang, X., Lin, R., & Wu, J. (2022). Communication in human–AI co-creation: Perceptual analysis of paintings generated by text-to-image system. Applied Sciences, 12(22), 11312. doi: https://doi.org/10.3390/app122211312
    Marketing Charts (2019. Mar.). How US CMOs Are Using Artificial Intelligence in Marketing Articles. Retrieved from: https://www.marketingcharts.com/charts/us-cmos-using-artificial-intelligence-marketing
    Martin. (2023). New Paradigm of AIGC Marketing for Brands: 2 Million People Pretending to Travel in Their Social Circles. Retrieved from: https://martinkalvenc.pixnet.net/blog/post/356652223 (by 2024.10.17).
    McKenzie, P. J., Burkell, J., Wong, L., Whippey, C., Trosow, S. E., & McNally, M. B. (2012). User-generated online content 1: Overview, current state and context. First Monday, 17(6). doi: https://doi.org/10.5210/fm.v17i6.3912
    McMahan, C., Hovland, R., & McMillan, S. (2009). Online marketing communications: Exploring online consumer behavior by examining gender differences and interactivity within internet advertising. Journal of Interactive Advertising, 10(1), 61-76. doi: https://doi.org/10.1080/15252019.2009.10722163
    Mir, I. A., & Ur REHMAN, K. (2013). Factors affecting consumer attitudes and intentions toward user-generated product content on YouTube. Management & Marketing, 8(4), 637-654.
    Mollen, A., & Wilson, H. (2010). Engagement, telepresence and interactivity in online consumer experience: Reconciling scholastic and managerial perspectives. Journal of Business Research, 63(9-10), 919-925. doi: https://doi.org/10.1016/j.jbusres.2009.05.014
    Morandé, S., & Amini, M. (2023). Digital persona: reflection on the power of generative AI for customer profiling in social media marketing. Qeios. doi: https://doi.org/10.32388/0qi028
    Morhart, F., Malär, L., Guèvremont, A., Girardin, F., & Grohmann, B. (2015). Brand authenticity: An integrative framework and measurement scale. Journal of Consumer Psychology, 25(2), 200-218. doi: https://doi.org/10.1016/j.jcps.2014.11.006
    Muller, M., Chilton, L. B., Kantosalo, A., Martin, C. P., & Walsh, G. (2022, April). GenAICHI: generative AI and HCI. In CHI conference on human factors in computing systems extended abstracts (pp. 1-7). doi: https://doi.org/10.1145/3491101.3503719
    Murdough, C. (2009). Social media measurement: It’s not impossible. Journal of Interactive Advertising, 10(1), 94-99. doi: https://doi.org/10.1080/15252019.2009.10722165
    Nakagawa, S., & Foster, T. M. (2004). The case against retrospective statistical power analyses with an introduction to power analysis. Acta ethologica, 7, 103-108. doi: https://doi.org/10.1007/s10211-004-0095-z
    Nandu. (2023). The Rise of Miaoya Camera: Experts Say AI Photography Technology Is Not New, and Data Privacy Concerns Must Be Taken Seriously. Retrieved from: https://m.mp.oeeee.com/a/BAAFRD000020230728824706.html (by 2024.10.17).
    Nath, K., Dhar, S., & Basishtha, S. (2014, February). Web 1.0 to Web 3.0-Evolution of the Web and its various challenges. In 2014 International Conference on Reliability Optimization and Information Technology (ICROIT) (pp. 86-89). IEEE. doi: https://doi.org/10.1109/ICROIT.2014.6798297
    Nonaka, I., & Takeuchi, H. (1996). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Long range planning, 29(4), 592. doi: https://doi.org/10.1016/0024-6301(96)81509-3
    Nworgu, B. G. (2006). Educational Research: Basic Issues & Methodology Nsukka: University Trust.
    Obilo, O. O., Chefor, E., & Saleh, A. (2021). Revisiting the consumer brand engagement concept. Journal of Business Research, 126, 634-643. doi: https://doi.org/10.1016/j.jbusres.2019.12.023
    O'Brien, H. L., Toms, E. G., Kelloway, E. K., & Kelley, E. (2008). Developing and evaluating a reliable measure of user engagement. Proceedings of the American Society for Information Science and Technology, 45(1), 1-10. doi: https://doi.org/10.1002/meet.2008.1450450258
    Orosa, R. (2023, Mar. 10th). Blitzworks Brings Art to Life in Latest Coca-Cola Global Campaign. DESIGNRUSH. Retrieved from: https://www.designrush.com/news/blitzworks-new-coca-cola-campaign
    Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P. F., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730-27744.
    Pagani, M., & Champion, R. (Eds.). (2023). Artificial Intelligence for Business Creativity. Taylor & Francis. doi: https://doi.org/10.4324/9781003287582
    Pagani, M., & Wind, Y. (2025). Unlocking Marketing Creativity Using Artificial Intelligence. Journal of Interactive Marketing, 60(1), 1-24. doi: https://doi.org/10.1177/10949968241265855
    Patterson, P., Yu, T., & De Ruyter, K. (2006, December). Understanding customer engagement in services. In Advancing theory, maintaining relevance, proceedings of ANZMAC 2006 conference, Brisbane, 4(6), 1-8.
    Patton, L. D., Renn, K. A., Guido, F. M., & Quaye, S. J. (2016). Student development in college: Theory, research, and practice. John Wiley & Sons.
    Pavlik, J.V. (2023), Collaborating with ChatGPT: considering the implications of generative artificial intelligence for journalism and media education, Journalism and Mass Communication Educator, 78(1) 84-93. doi: https://doi.org/10.1177/10776958221149577
    Pearse, N. (2011). Deciding on the scale granularity of response categories of likert type scales: the case of a 21‑point scale. Electronic Journal of Business Research Methods, 9(2), 159-171.
    Phillips, B. J., & McQuarrie, E. F. (2010). Narrative and persuasion in fashion advertising. Journal of Consumer Research, 37(3), 368-392. doi: https://doi.org/10.1086/653087
    Plano Clark, V. L. (2017). Mixed methods research. The Journal of Positive Psychology, 12(3), 305-306. doi: https://doi.org/10.1080/17439760.2016.1262619
    Portada (2020. Jan. 12). 8 Ways AI is Transforming Marketing Today. Retrieved from: https://www.portada-online.com/feature-technology/8-ways-ai-is-transforming-marketing-today/
    Prahalad, C. K., & Ramaswamy, V. (2004). Co‐creating unique value with customers. Strategy & Leadership, 32(3), 4-9. doi: https://doi.org/10.1108/10878570410699249
    Pulizzi, J. (2014). The rise of storytelling as the new marketing. Publishing Research Quarterly, 28(2), 116–123. doi: https://doi.org/10.1007/s12109-012-9264-5
    Quesenbery, W., & Design, W. I. (2003, June). Dimensions of usability: Defining the conversation, driving the process. In UPA 2003 Conference (pp. 23-27).
    Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192-210. doi: https://doi.org/10.5465/amr.2018.0072
    Rancati, E., & Gordini, N. (2014). Content marketing metrics: Theoretical aspects and empirical evidence. European Scientific Journal, 10(34). 92-104.
    Rawat, S. (2024, Jan. 18th). The Impact of User-Generated Content on the Modern Market. Retrieved from: https://ugc101.com/blog/the-impact-of-user-generated-content-on-the-modern-market/
    Ren, Z., Qin, X., & Wang, B. (2023, December). Unraveling the impact of explainability of artificial intelligence-generated content (AIGC) on design style transfer effects. In Proceedings of the 2023 9th International Conference on Communication and Information Processing (pp. 171-185). doi: https://doi.org/10.23919/JCC.fa.2023-0359.202310
    Rios, R. E., & Riquelme, H. E. (2010). Sources of brand equity for online companies. Journal of Research in Interactive Marketing, 4(3), 214–240. https://doi.org/10.1108/17505931011070587
    Rooney, J. J., & Heuvel, L. N. V. (2004). Root cause analysis for beginners. Quality progress, 37(7), 45-56.
    Rowley, J. (2008). Understanding digital content marketing. Journal of Marketing Management, 24(5-6), 517–540. doi: https://doi.org/10.1362/026725708X325977
    Ryan, D. (2016). Understanding digital marketing: marketing strategies for engaging the digital generation. New York: Kogan Page Publishers.
    Ryan, D., & Jones, C. (2011). The best digital marketing campaigns in the world: mastering the art of customer engagement. Kogan Page Publishers.
    Saarijärvi, H. (2012). The mechanisms of value co-creation. Journal of Strategic Marketing, 20(5), 381-391. doi: https://doi.org/10.1080/0965254X.2012.671339
    Sari, J. N., Nugroho, L. E., Ferdiana, R., & Santosa, P. I. (2016). Review on customer segmentation technique on ecommerce. Advanced Science Letters, 22(10), 3018-3022. doi: https://doi.org/10.1166/asl.2016.7985
    Sarker, M. M. K., Rashwan, H. A., Akram, F., Singh, V. K., Banu, S. F., Chowdhury, F. U. H., Choudhury, K. A., Chambon, S., Radeva, P., Puig, D., & Abdel-Nasser, M. (2021). SLSNet: Skin lesion segmentation using a lightweight generative adversarial network. Expert Systems with Applications, 183, 115433. doi: https://doi.org/10.1016/j.eswa.2021.115433
    Sarmento, R. P., & Costa, V. (2019). Confirmatory factor analysis--a case study. arXiv preprint arXiv:1905.05598. doi: https://doi.org/10.48550/arXiv.1905.05598
    Sarpatwari, A., Sinha, M. S., & Kesselheim, A. S. (2017). The opioid epidemic: fixing a broken pharmaceutical market. Harv. L. & Pol'y Rev., 11, 463.
    Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modeling. In Handbook of Market Research (pp. 587-632). Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-57413-4_15
    Schivinski, B., Christodoulides, G., & Dabrowski, D. (2016). Measuring consumers’ engagement with brand-related social-media content: Development and validation of a scale that identifies levels of social-media engagement with brands. Journal of Advertising Research, 56(1), 64-80. doi: https://doi.org/10.2501/JAR-2016-004
    Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323-338. doi: https://doi.org/10.3200/JOER.99.6.323-338
    Shahbaznezhad, H., Dolan, R. and Rashidirad, M. (2021), The role of social media content format and platform in users' engagement behavior, Journal of Interactive Marketing, 53, 47-65. doi: https://doi.org/10.1016/j.intmar.2020.05.001
    Sheth, J. N., & Uslay, C. (2007). Implications of the revised definition of marketing: from exchange to value creation. Journal of Public Policy & Marketing, 26(2), 302-307. doi: https://doi.org/10.1509/jppm.26.2.302
    Solem, B. A. A., & Pedersen, P. E. (2016). The role of customer brand engagement in social media: conceptualisation, measurement, antecedents and outcomes. International Journal of Internet Marketing and Advertising, 10(4), 223-254. https://doi.org/10.1504/IJIMA.2016.081344
    Soni, G., & Kodali, R. (2012). A critical review of empirical research methodology in supply chain management. Journal of Manufacturing Technology Management, 23(6), 753-779. doi: https://doi.org/10.1108/17410381211253326
    Soni, V. (2022). Role of temporal, demographic, and behavioral factors in customer conversion through dynamic creative optimization in the consumer-packaged goods setting. International Journal of Business Intelligence and Big Data Analytics, 5(1), 46-56.
    Sonvilla-Weiss, S. (2010). Introduction: Mashups, remix practices and the recombination of existing digital content. In Mashup Cultures (pp. 8-23). Springer, Vienna. doi: https://doi.org/10.1007/978-3-7091-0096-7_1
    Sprott, D., Czellar, S., & Spangenberg, E. (2009). The importance of a general measure of brand engagement on market behavior: Development and validation of a scale. Journal of Marketing Research, 46(1), 92-104. doi: https://doi.org/10.1509/jmkr.46.1.92
    Starbucks stories and news. (2016). Starbucks Invites Customers to Create Red Cup Art. Retrieved from: https://stories.starbucks.com/stories/2016/starbucks-invites-customers-to-create-red-cup-art/
    Steimle, J. (2014, Sep. 19). What is content marketing. Forbes. Retrieved from: https://www.forbes.com/sites/joshsteimle/2014/09/19/what-is-content-marketing/?sh=5e9071bd10b9
    Sun, W., Min, X., Lu, W., & Zhai, G. (2022, October). A deep learning based no-reference quality assessment model for ugc videos. In Proceedings of the 30th ACM International Conference on Multimedia (pp. 856-865). doi: https://doi.org/10.1145/3503161.3548329
    Sutcliffe, A. (2022). Designing for user engagment: Aesthetic and attractive user interfaces. Switzerland: Springer Nature. doi: http://doi.org/10.1007/978-3-031-02188-6
    Swanborn, P. (2010). Case study research: What, why and how?. London, England: Sage.
    Taiminen, K., & Karjaluoto, H. (2017). Examining the performance of brand-extended thematic-content: The divergent impact of avid-and skim-reader groups. Computers in Human Behavior, 72, 449-458. doi: https://doi.org/10.1016/j.chb.2017.02.052
    Taiminen, K., & Ranaweera, C. (2019). Fostering brand engagement and valueladen trusted B2B relationships through digital content marketing: The role of brand’s helpfulness. European Journal of Marketing, 53(9), 1759–1781. doi: https://doi.org/10.1108/EJM-10-2017-0794
    Tao, W., Fernandes, J., & Ji, Y. G. (2023). Are Repeated Stories a Good Strategy?: Focusing on Narrative Persuasion in Digital Political Communication. In Narratives in Public Communication (pp. 31-57). Routledge.
    Tellis, G.J., MacInnis, D.J., Tirunillai, S. and Zhang, Y. (2019). What drives virality (sharing) of online digital content? The critical role of information, emotion, and brand prominence. Journal of Marketing, 83(4), 1-20. doi: https://doi.org/10.1177/0022242919841034
    Tellis, W. (1997). Application of a case study methodology. The Qualitative Report, 3(3), 1-19. doi: https://doi.org/10.46743/2160-3715/1997.2015
    Terho, H., Mero, J., Siutla, L., & Jaakkola, E. (2022). Digital content marketing in business markets: Activities, consequences, and contingencies along the customer journey. Industrial Marketing Management, 105, 294-310. doi: https://doi.org/10.1016/j.indmarman.2022.06.006
    The Coca-Cola Company. (2021). Coca‑Cola Launches ‘Real Magic’ Brand Platform, Including Refreshed Visual Identity and Global Campaign. Retrieved from: https://www.coca-colacompany.com/media-center/coca-cola-launches-real-magic-brand-platform-including-refreshed-visual-identity-and-global-campaign (by 2024.10.17).
    The Work. (2021). Create Real Magic AI. Retrieved from: https://www.lovethework.com/work-awards/entries/676459
    Thurman, R. P. (2013). Traditional and social media marketing comparison: case: the Coca-Cola Company. Retrieved from: https://www.theseus.fi/handle/10024/65873
    Tim O'Reilly. (2005). Web 2.0: Compact Definition?. O'Reilly Radar. Retrieved from: http://radar.oreilly.com/archives/2005/10/web-20-compact-definition.html
    Tu, Z., Wang, Y., Birkbeck, N., Adsumilli, B., & Bovik, A. C. (2021). UGC-VQA: Benchmarking blind video quality assessment for user generated content. IEEE Transactions on Image Processing, 30, 4449-4464. doi: https://doi.org/10.1109/TIP.2021.3072221
    Turchi, T., Carta, S., Ambrosini, L., & Malizia, A. (2023, May). AI-Human Co-Creation: evaluating the impact of large-scale text-to-image generative models on the creative process. In International Symposium on End User Development (pp. 35-51). Cham: Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-34433-6_3
    Uno. (2024). Unlocking the Secrets of AIGC Marketing Applications: Explore 10 Latest Cases from Well-Known Brands. Retrieved from: https://www.web5studio.app/top10brands-ai-marketing-case/ (by 2024.10.17).
    Van Doorn, J., Lemon, K. N., Mittal, V., Nass, S., Pick, D., Pirner, P., & Verhoef, P. C. (2010). Customer engagement behavior: Theoretical foundations and research directions. Journal of Service Research, 13(3), 253-266. doi: https://doi.org/10.1177/1094670510375599
    Verhellen, Y., Dens, N., & De Pelsmacker, P. (2013). Consumer responses to brands placed in Youtube movies: the effect of prominence and celebrity endorser expertise. Journal of electronic commerce research.-Long Beach, Calif.,[200-], currens, 14(4), 287-303.
    Vidrih, M., & Mayahi, S. (2023). Generative AI-driven storytelling: A new era for marketing. arXiv preprint arXiv:2309.09048. doi: https://doi.org/10.48550/arXiv.2309.09048
    Vieira, V. A., de Almeida, M. I. S., Agnihotri, R., da Silva, N. S. D. A. C., & Arunachalam, S. (2019). In pursuit of an effective B2B digital marketing strategy in an emerging market. Journal of the Academy of Marketing Science, 47(6), 1085-1108. doi: https://doi.org/10.1007/s11747-019-00687-1
    Vinchon, F., Lubart, T., Bartolotta, S., Gironnay, V., Botella, M., Bourgeois-Bougrine, S., ... & Gaggioli, A. (2023). Artificial Intelligence & Creativity: A manifesto for collaboration. The Journal of Creative Behavior, 57(4), 472-484. doi: https://doi.org/10.1002/jocb.597
    Vivek, S. D., Beatty, S. E., & Morgan, R. M. (2012). Customer engagement: Exploring customer relationships beyond purchase. Journal of Marketing Theory and Practice, 20(2), 122-146. doi: https://doi.org/10.2753/MTP1069-6679200201
    Voorveld, H. A., Van Noort, G., Muntinga, D. G., & Bronner, F. (2018). Engagement with social media and social media advertising: The differentiating role of platform type. Journal of Advertising, 47(1), 38-54. doi: https://doi.org/10.1080/00913367.2017.1405754
    Wahid, R., Mero, J., & Ritala, P. (2023a). Written by ChatGPT, illustrated by Midjourney: generative AI for content marketing. Asia Pacific Journal of Marketing and Logistics, 35(8), 1813-1822. doi: https://doi.org/10.1108/APJML-10-2023-994
    Wahid, R., Karjaluoto, H., Taiminen, K. & Asiati, D.I. (2023b), “Becoming TikTok famous: strategies for global brands to engage consumers in an emerging market”, Journal of International Marketing, 31(1), 106-123. doi: https://doi.org/10.1177/1069031X221129554
    Wahid, R.M. & Gunarto, M. (2022), Factors driving social media engagement on Instagram: evidence from an emerging market. Journal of Global Marketing, 35(2), 169-191. doi: https://doi.org/10.1080/08911762.2021.1956665
    Wall, A., & Spinuzzi, C. (2018). The art of selling-without-selling: Understanding the genre ecologies of content marketing. Technical Communication Quarterly, 27(2), 137-160. doi: https://doi.org/10.1080/10572252.2018.1425483
    Wang, B. (2023, October). Democratizing Content Creation and Consumption through AI-Human Copilot Systems. In Adjunct Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (pp. 1-4). doi: https://doi.org/10.1145/3586182.3616707
    Wang, Q., Cao, X., Wang, J., & Zhang, W. (2023). Knowledge-aware collaborative filtering with pre-trained language model for personalized review-based rating prediction. IEEE Transactions on Knowledge and Data Engineering, 36(3), 1170-1182. doi: https://doi.org/10.1109/TKDE.2023.3301884
    Washington, J. (2023). The impact of generative artificial intelligence on writer's self-efficacy: a critical literature review. Available at SSRN 4538043. doi: http://dx.doi.org/10.2139/ssrn.4538043
    Wenzheng, L. (2023, July). The characteristics, relationships and challenges of metaverse, web 3.0 and AIGC. In 2023 IEEE 13th International Conference on Electronics Information and Emergency Communication (ICEIEC) (pp. 32-37). IEEE. doi: https://doi.org/10.1109/ICEIEC58029.2023.10201132
    Wilson, P. F., Dell, L. D., & Anderson, G. F. (1996). Root cause analysis: a tool for total quality management. The Journal for Healthcare Quality (JHQ), 18(1), 40. doi: https://doi.org/10.1111/j.1945-1474.1996.tb00823.x
    Wu, J., Gan, W., Chen, Z., Wan, S., & Lin, H. (2023a). Ai-generated content (aigc): A survey. arXiv preprint arXiv:2304.06632. doi: https://doi.org/10.48550/arXiv.2304.06632
    Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q. L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136. doi: https://doi.org/10.1109/JAS.2023.123618
    Wu, Z., Ji, D., Yu, K., Zeng, X., Wu, D., & Shidujaman, M. (2021). AI creativity and the AI-Human Co-Creation model. In Human-computer interaction. theory, methods and tools: thematic area, HCI 2021, held as part of the 23rd HCI international conference, hCII 2021, virtual event, July 24–29, 2021, proceedings, part i 23 (pp. 171-190). Springer International Publishing. doi: https://doi.org/10.1007/978-3-030-78462-1_13
    Xu, Y, H. (2024). AIGC-generated audiovisual content is reshaping the film and television industry by increasing production speed by 200% and reducing costs by 50%. Retrieved from: https://tw.news.yahoo.com/%E5%85%A8%E6%96%B0%E5%85%A7%E5%AE%B9%E5%89%B5%E4%BD%9C-aigc%E7%94%9F%E6%88%90%E5%BD%B1%E9%9F%B3%E6%8F%90%E5%8D%87200-%E8%A3%BD%E4%BD%9C%E9%80%9F%E5%BA%A6-%E6%B8%9B%E5%B0%9150-%E6%88%90%E6%9C%AC-064517789.html
    Yaghtin, S., Safarzadeh, H., & Zand, M. K. (2020). Planning a goal-oriented B2B content marketing strategy. Marketing Intelligence & Planning, 38(7), 1007–1020. doi: https://doi.org/10.1108/MIP-11-2019-0559
    Yang, Z, Y. (2024). Top 8 Outstanding Media Agency Cases of 2023. Retrieved from: https://www.brain.com.tw/news/articlecontent?ID=52185 (by 2024.10.17).
    Yin, R. K. (2009). How to do better case studies. The SAGE handbook of applied social research methods, 2(254-282).
    Yin, R. K. (2018). Case study research: Design and methods (6th ed.). London, England: Sage.
    Zhang, X., & Chen, R. (2008). Examining the mechanism of the value co-creation with customers. International Journal of Production Economics, 116(2), 242-250. doi: https://doi.org/10.1016/j.ijpe.2008.09.004
    Zhu, Z., Yu, T., Wang, Y., & Xu, J. (2025). Revolutionizing Design Content with AIGC: User-Centered Challenges, Opportunities, and Workflow Evolution. IEEE Access. doi: https://doi.org/10.1109/ACCESS.2025.3567750
    Zi-yang, H. U. (2024). AIGC Related Context: A New Communication Culture For Human. Journal of Literature and Art Studies, 14(10), 921-931. doi: https://doi.org/10.17265/2159-5836/2024.10.016

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE