| 研究生: |
李柏賢 Lee, Po-Hsien |
|---|---|
| 論文名稱: |
分析多孔隙瀝青混凝土績效之影響因素 Analyses of Factors Affecting Performance of Porous Asphalt Concrete |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 多孔性瀝青混凝土 、鋪面績效 、標稱粒徑 、一般刨除 、細紋刨除 、透水 、車轍 、平坦度 、抗滑值 |
| 外文關鍵詞: | Porous asphalt concrete (PAC), Pavement performance, Functionality, Durability |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多孔性瀝青混凝土(Porous Asphalt Concrete,PAC)具有透水性
能、表面粗糙,提供足夠摩擦阻力,提升安全性等特性,逐漸為公路主
管單位使用。本研究探討PAC 鋪築於國道3 號、8 號與10 號之績效,
績效包含功能性、耐久性及安全性三大類別,並且將開放級配摩擦層
(OGFC)納入比較,探討不同最大標稱粒徑(NMAS)、鋪築厚度、瀝青種
類,以及傳統一般刨除和細紋刨除方式分別比較,並評估交通荷重單軸
載重當量數(ESAL)值對鋪面績效的影響。
研究顯示鋪築厚度與最大標稱粒徑(NMAS)大小皆影響路面減噪效
果,鋪築厚度從3cm 增加至5cm,減噪效果越佳,且交通壓實後的透
水量越能維持,也較能抵抗交通載重形成之車轍量。鋪築完成後的養護
時間直接影響PAC 路面的功能性及耐久性,同樣鋪築厚度情況下,充
足養護之新工路段透水性和車轍量皆與其餘路段相同,瀝青種類亦對績
效有明顯影響,使用高黏度瀝青的PAC 路面功能性與耐久性較佳;從
短期績效數據顯示刨除方式對PAC 績效之影響不大。考量成本、施工
和長期績效,建議維修路段鋪設4cm 厚、NMAS 19 mm 之PAC。
Porous asphalt concrete (PAC) has water permeability, surface roughness, to provide sufficient frictional resistance, improve security and other features, and gradually the use of the highway authorities. This study investigated the PAC paving on National Highway No. 3, 8 and 10 of performance, performance contain functionality, durability and safety of the three categories, and will be open graded friction Course (OGFC) included in the comparative effects of different nominal maximum aggregate size (NMAS), paving thickness, asphalt type, as well as generally and fine eliminating respectively compared eliminating manner, and to assess the impact on traffic load Equivalent Single Axle Load (ESAL) value of pavement performance.
Studies have shown that paving thickness and nominal maximum aggregate size (NMAS) are affecting road noise reduction effect, paving thickness increases from 3cm to 5cm, the better the noise reduction effect, and water permeability after more traffic compaction can be maintained, but also more resistant to rutting amount of traffic load form. Conservation time after the completion of the road paved directly affect the PAC functionality and durability, under the same paving thickness, adequate conservation roads have the same permeability and rutted of the remaining sections, asphalt species also have significantly effect on performance, the use of high viscosity asphalt pavement PAC have better functionality and durability; PAC has little effect on the performance of the way the eliminating from short-term performance data. Cost considerations, construction and long-term performance, we recommend maintenance road paved 4cm thick, NMAS 19 mm of the PAC.
日本道路協會 (1999) ,「排水性鋪裝技術指針(案)」,日本。
施工綱要規範 (2009) ,「第02798章多孔隙瀝青混凝土鋪V1.0」,行政院公共工程委員會。
郎勝富 (2011),多孔性瀝青混凝土破壞及養護,碩士論文,成功大學土木工程系,台南。
行政院環境保護署(2010),「環境音量標準」,http://noise.ksepb.gov.tw/noise/law.asp ,高雄市噪音防制網,2015年3月24日瀏覽。
高雄市政府環境保護局 (2014) ,「公告高雄市轄境噪音管制區範圍及分類」,http://ncs.epa.gov.tw/AA/tw-a/26.pdf ,噪音管制資訊網,2015年3月24日瀏覽。
蔡攀鰲 (2004) ,「瀝青混凝土」三民書局,台北。
American Association of State Highway and Transportation Officials (AASHTO) (1993). AASHTO Guide for Design of Pavement Structures, Washington, D.C.
Akihiro, M. , Toshiro, J. , Takaaki, N. , Hiroshi I. and Katsuya, T. (2014). “Construction and Pavement Properties After Seven Years in Porous Asphalt with Long Life,” Construction and Building Materials, Vol.50, pp.401~413.
Alvarez, A.E., Martin, A.E., Estakhri, C. and Izzo, R. (2009). “Evaluation of Durability Tests for Permeable Friction Course Mixtures,” International Journal of Pavement Engineering, Vol.11, pp.49-60.
Alvarez, A.E., Martin, A.E. and Estakhri, C. (2011). “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures,” Construction and Building Materials, Vol.25, pp.108-113.
Anfosso-L’ed’ee, F. and Do, M. T. (2002). “Geometric Descriptors of Road Surface Texture in Relation to Tire-Road Noise,” In Transportation Research Record: Journal of the Transportation Research Board, No. 1806, TRB, Transportation Research Board of the Academies, Washington, D.C., pp.160-167.
Bendtsen, H. and Andersen, B. (2004) Thin Open Layers as Noise Reducing Pavements. Report 135, Danish Road Institute, Road Directorate, Ministry of Transport-Denmark.
Brousseaud, Y. and Anfosso-Le’de’e, F. (2005). “Review of Existing Low Noise Pavement Solutions in France,” Sustainable Road Surfaces for Traffic Noise Control, SILVIA-LCPC-011-01-WP4-310505, European Commission.
Chen, J.S. and Huang, C.C. (2010). "Effect of Surface Characteristics on Bonding Properties of Bituminous Tack Coat," Transportation Research Record: Journal of the Transportation Research Board, No. 2180, TRB, National Research Council, Washington, D.C., pp.142-149.
Cooley Jr., L.A. (2009). “Performance and Maintenance of Permeable Friction Courses; Vol. III Annotated Literature Review,” NCHRP Project 9-41, Burns Cooley Dennis, Inc., Transportation Research Board, Washington, D.C.
Cooley, L.A., Brumfield, J.W. , Mallick ,R.B. , Mogawer ,W.S., Partl ,M. , Poulikakos, L. and Hicks, G. (2009). “Construction and Maintenance Practices for Permeable Friction Courses,” NCHRP Report 640, National Research Council, Washington, D.C.
Hanson, D. I., and James, R. S. (2004) Colorado DOT Tire/Pavement Noise Study. Report No.CDOT-DTD-R-2004-5, National Center for Asphalt Technology, Auburn University, Auburn, AL.
Henry, J.J. (2000). “Evaluation of Pavement Friction Characteristics,” Transportation Research Board, NCHRP Synthesis 291, National Research Council, Washington, D.C.
Herman, L. , Withers, J. and Pinckney, E. (2006) “Surfacing Retexture to Reduce Tire-Road Noise for Existing Concrete Pavements,” In Transportation Research Record: Journal of the Transportation Research Board, No. 1983, Transportation Research Board of the Academies, Washington, D.C., pp.51-58.
Lee, C.S.Y., and Fleming, G.G. (1996). Measurement of Highway-Related Noise, U.S. Department of Transportation, FHWA-PD-96-046.
Liu, K. W. , Alvarez, A. E. , Martin, A. E. , Dossey, T. , Smit, A. and Estakhri, C. K. (2009). Synthesis of Current Research on Permeable Friction Courses: Performance, Design, Construction, and Maintenance, Texas Transportation Institute, Report 0-5836-1, Austin, Texas.
Lou, Y. (2003). Effect of Pavement Temperature on Frictional Properties of Hot-Mix-Asphalt Pavement Surfaces at the Virginia Smart Road, Master of Science Thesis, Virginia Polytechnic Institute, Virginia State University.
McDaniel, R.S., Thornton, W.D. and Dominguez, J.G. (2004). Field Evaluation of Porous Asphalt Pavement, Report No. SQDH 2004-3, North Central Superpave Center, Purdue University, West Lafayette.
Ohkawa, H., Sato, T., and Hokari, K. (1993). “Study on the Estimation of Permeability Coefficient of Drain Asphalt,” Proceedings of the Japan Society of Civil Engineers, No. 478, pp.101-108.
Ongel, A., Kohler, E. and Harvey, J. (2008). “Principal Components Regression of Onboard Sound Intensity Levels,” Journal of Transportation Engineering, ASCE, Vol.134, No.11, pp.459-466.
Oliver J.W.H. (2009). “Factors Affecting the Correlation of Skid Testing Machines and A Proposed Correlation Framework,” Road and Transport Research, Vol.18, pp.39-48.
Trevino, M., and Dossey, T. (2006). A Research Plan for Measuring Noise Levels in Highway Pavements in Texas. Report No. 0-5185, Center for Transportation Research, University of Texas at Austin, Texas.
校內:2025-12-31公開