簡易檢索 / 詳目顯示

研究生: 楊軒釩
Yang, Xuan-Fan
論文名稱: 即時視覺定位全方位自走機器人之應用
Autonomous Omni-Directional Mobile Robot - The Application of Real-Time Localization
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 影像處理全方位輪視覺定位
外文關鍵詞: Image processing, Omni-directional wheel, Visual localization
相關次數: 點閱:106下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是設計一個可辨識目標物並且達到機器人近距離定位以換取物體的智慧型全方位自走車,為了達到這個目的,必須為自走車設計定位系統,使得自走車能在資訊不足的環境中,可以透過即時影像處理的技術配合全方位平台來達到辨識並定位目標物的功能。
    自走車設立一四輪全方位移動平台並架設1 組CCD Webcam 以擷取影像,並且將所擷取到的影像透過USB 傳輸至Netbook 電腦 (ASUS EEEPC 901)執行即時數位影像處理技術,並且使用兩組單晶片PIC16F877A 做為控制晶片,人機介面是使用Borland C++ Builder 6.0 所撰寫而成,我們可透過人機介面對自走車下達指令,自走車是由四顆直流馬達驅動配合全方位輪並且透過RS-232 與 Netbook 電腦溝通。
    在實際環境下的實驗結果中,驗證所提方法之通用性,結合機器視覺定位及車體行走,解決機器人於非使用影像感測器之情形下,機器人難以精確地達到自主換物之功能。

    The goal of this thesis is to design an omni-directional vehicle with the ability to recognize the objects in order to localize and exchange these objects in near distance. In light of the ability to recognize and localize the objects, the Autonomous Mobile Vehicle (AMV) together with the real-time image process techniques and mobile platform was designed to adapt to environment of insufficient information.
    The AMV with a group of CCD Webcam which captures the image was controlled by the mobile platform of omni-directional wheels. The AMV transmits image through the Netbook (ASUS EEEPC 901) to implement the real-time digital image processing techniques which is made use of PIC16F877 as its control chip. We use Borland C++ Builder 6.0 to accomplish the Human-Machine interface system. Through the Human-Machine interface system we are able to send signals to command the AMV which is driven by of direct current motors and communicates with the Netbook Computer through RS232.
    In terms of experiments and results, the AMV coordinated with visual localization provides the efficient function to exchange objects automatically. The research in the real environment shows that the research offers a better method to deal with the problems about the robot failed to exchange objects precisely in the past.

    目錄 中文摘要...............................................................................................................................I Abstract ............................................................................................................................... II 致謝....................................................................................................................................III 目錄....................................................................................................................................IV 圖目錄................................................................................................................................VI 表目錄..............................................................................................................................VIII 第1 章緒論......................................................................................................................... 1 1.1 研究背景與動機.................................................................................................... 1 1.2 研究目的................................................................................................................ 3 1.3 文獻回顧................................................................................................................ 4 1.4 論文架構................................................................................................................ 6 第2 章全方位自走車系統之整體架構............................................................................. 7 2.1 自走車系統整體架構簡介.................................................................................... 7 2.2 CCD Webcam 攝影機............................................................................................ 9 2.3 全方位自走車硬體架構...................................................................................... 10 2.3.1 車體部份....................................................................................................11 2.3.2 控制核心................................................................................................... 13 2.3.3 鎳鎘電池................................................................................................... 15 2.3.4 電壓調整器............................................................................................... 17 2.3.5 有刷直流馬達........................................................................................... 18 2.3.6 直流馬達驅動IC....................................................................................... 19 2.3.7 伺服馬達驅動........................................................................................... 21 2.3.8 自走車控制系統與電路........................................................................... 22 2.4 自走車系統軟體架構.......................................................................................... 23 2.4.1 C++ Builder語言簡介................................................................................ 23 2.4.2 自走車系統程式介面............................................................................... 24 第3 章應用機器視覺於近距離定位之全方位移動系統............................................... 25 3.1 應用機器視覺於近距離定位.............................................................................. 25 3.1.1 影像擷取................................................................................................... 25 3.1.2 色彩空間介紹與顏色偵測....................................................................... 26 3.1.3 影像二值化............................................................................................... 27 3.1.4 閉合運算與斷開運算............................................................................... 29 3.1.5 邊緣擷取................................................................................................... 32 3.1.6 影像細線化............................................................................................... 34 3.1.7 直線偵測之哈克轉換法........................................................................... 35 V 3.1.8 目標物影像辨識完整流程....................................................................... 37 3.1.9 單攝影機影像定位模型........................................................................... 38 3.2 全方位移動系統.................................................................................................. 44 3.2.1 簡述全方位移動機器人........................................................................... 44 3.2.2 全方位移動平台基本架構....................................................................... 44 3.2.3 全方位移動系統之運動方程式推導....................................................... 46 3.3 應用機器視覺於近距離定位之全方位移動系統.............................................. 48 第4 章實驗結果............................................................................................................... 49 4.1 四輪全方位移動機器人行走實驗...................................................................... 50 4.2 影像感測器距離.................................................................................................. 52 4.3 更換電池機械手臂設計與換物實驗.................................................................. 57 4.4 機器人換物實驗.................................................................................................. 59 4.5 機器人視覺定位角度模糊控制.......................................................................... 62 4.5.1 模糊控制系統簡述................................................................................... 63 4.5.2 模糊控制器的組成................................................................................... 64 4.5.3 模糊化機制與設計................................................................................... 64 4.5.4 模糊規則庫............................................................................................... 67 4.5.5 模糊推論................................................................................................... 68 4.5.6 解模糊化................................................................................................... 68 4.6 機器人視覺定位實驗.......................................................................................... 70 第5 章結論與未來展望................................................................................................... 72 5.1 結論...................................................................................................................... 72 5.2 建議...................................................................................................................... 73 參考文獻............................................................................................................................. 74 自述.................................................................................................................................... 78 VI 圖目錄 圖 1-1 Roomba 610.............................................................................................................. 2 圖 1-2 Sony Aibo 機器狗.................................................................................................... 2 圖 1-3 Honda Asimo 機器人.............................................................................................. 2 圖 2-1 全方位自走車硬體架構.......................................................................................... 7 圖 2-2 工作分配圖.............................................................................................................. 8 圖 2-3 Logitech Quickcam MP CCD Webcam.................................................................... 9 圖 2-4 自走車俯視圖........................................................................................................ 10 圖 2-5 自走車側視圖........................................................................................................ 10 圖 2-6 自走車前視圖.........................................................................................................11 圖 2-7 自走車結構俯視示意圖........................................................................................ 12 圖 2-8 自走車結構側視示意圖........................................................................................ 13 圖 2-9 PIC16F877A接腳圖............................................................................................... 14 圖 2-10 內部構造方塊圖.................................................................................................. 15 圖 2-11 ZEBRA 鎳鎘電池................................................................................................ 16 圖 2-12 本實驗自走車使用之兩顆串聯鎳鎘電池.......................................................... 16 圖2-13 SLW05B-05 電壓調整器...................................................................................... 17 圖 2-14 直流馬達外觀...................................................................................................... 18 圖 2-15 TA7291AP IC的外觀圖 圖 2-16 TA7291AP IC內部電路圖.................... 19 圖 2-17 TA8429H IC的外觀圖 圖 2-18 TA8429H IC內部電路圖......................... 19 圖 2-19 TLP250 光耦合器隔離電路................................................................................. 20 圖 2-20 GWServo S666N 2BB 伺服馬達外觀................................................................ 21 圖 2-21 RS-232 介面轉USB介面傳輸線.......................................................................... 22 圖 2-22 電路系統模組...................................................................................................... 23 圖 2-23 全方位自走車系統軟體控制介面...................................................................... 24 圖 3-1 黑盒子影像............................................................................................................ 26 圖 3-2 RGB色彩空間示意圖............................................................................................ 27 圖 3-3 (圖3-1)作顏色偵測後所得影像............................................................................ 27 圖 3-4 (圖3-3)作影像二值化後所得影像........................................................................ 28 圖 3-5 3x3 遮罩示意圖...................................................................................................... 29 圖 3-6 (圖3-4)膨脹運算後所得影像......................................................................... 30 圖 3-7(圖3-6)侵蝕運算後的影像............................................................................... 30 圖 3-8(圖3-7)侵蝕運算後的影像............................................................................... 31 圖 3-9(圖3-8)侵蝕運算後的影像............................................................................... 31 圖 3-10 Roberts邊緣檢測法遮罩模型.............................................................................. 32 圖 3-11 Prewitt邊緣檢測法遮罩模型............................................................................... 32 VII 圖 3-12 Sobel邊緣檢測法遮罩模型................................................................................. 33 圖 3-13 (圖3-9)邊緣擷取後的影像........................................................................... 34 圖 3-14 (圖3-13)細線化後所得影像......................................................................... 35 圖 3-15 哈克轉換空間關係圖.......................................................................................... 36 圖 3-16 (圖3-14)直線偵測所得影像................................................................................ 37 圖 3-17 (圖3-1、圖3-16)結合所得影像......................................................................... 37 圖 3-18 影像處理及辨識系統之流程圖.......................................................................... 38 圖 3-19 攝影機與目標物位置示意圖.............................................................................. 39 圖 3-20 單攝影機模型圖(無角度參數)........................................................................... 39 圖 3-21 攝影機模型示意圖.............................................................................................. 41 圖 3-22 機器人與目標物之間角度偏右影像.................................................................. 42 圖 3-23 機器人與目標物之間無角度影像...................................................................... 42 圖 3-24 機器人與目標物之間角度偏左影像.................................................................. 42 圖 3-25 全方位輪實體圖.................................................................................................. 45 圖 3-26 全方位移動平台底盤架構圖.............................................................................. 45 圖 3-27 全方位移動系統運動模型.................................................................................. 46 圖 3-28 機器視覺於近距離定位流程圖.......................................................................... 48 圖 4-1 即時視覺定位之全方位自走機器人系統流程圖................................................ 49 圖 4-2 即時視覺定位之全方位自走機器人系統流程圖................................................ 50 圖 4-3 攝影機與目標物距離與影像比例曲線................................................................. 53 圖 4-4 機械手臂更換模組實體圖.................................................................................... 57 圖 4-5 機械手臂作動流程圖............................................................................................ 58 圖 4-6 機器人角度定位示意圖........................................................................................ 62 圖 4-7 機器人角度定位失敗示意圖................................................................................ 62 圖 4-8 模糊控制系統架構圖............................................................................................ 63 圖 4-9 模糊控制器的組成圖............................................................................................ 64 圖 4-10 傾斜度之輸入變數歸屬函數圖........................................................................... 66 圖 4-11 目標物面積大小之輸入變數歸屬函數圖.......................................................... 66 圖 4-12 模糊輸出變數歸屬函數圖.................................................................................. 66 圖 4-13 模糊控制輸出明確值.......................................................................................... 69 VIII 表目錄 表 2-1 自走車整體設備...................................................................................................... 8 表 2-2 攝影機技術規格...................................................................................................... 9 表 2-3 車體規格表............................................................................................................. 12 表 2-4 直流馬達規格......................................................................................................... 18 表 2-5 TA7291AP之馬達動作真值表.............................................................................. 20 表 2-6 TA8429H之馬達動作真值表................................................................................. 20 表 2-7 伺服馬達規格........................................................................................................ 21 表 3-1 攝影機模型符號定義............................................................................................ 40 表 3-1 攝影機模型符號定義............................................................................................ 41 表 3-2 全方位輪規格表.................................................................................................... 45 表 3-3 全方位移動系統運動模型參數定義.................................................................... 47 表 4-1 機器人指定行走距離測試..................................................................................... 51 表 4-2 機器人指定行走方位測試.................................................................................... 51 表 4-3 攝影機與目標物距離與影像比例實驗數據........................................................ 53 表 4-4 攝影機與目標物之距離量測實驗數據................................................................. 54 表 4-5 攝影機與目標物之距離量測實驗數據 (偏移五度)........................................... 55 表 4-6 攝影機與目標物之距離量測實驗數據 (偏移二十度)....................................... 56

    1. Qingmei, Y. and S. Jianmin. An Underwater Autonomous Robot Based on Multi-sensor Data Fusion. in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on. 2006.
    2. iROBOT. Roomba 610. Available from: http://store.irobot.com.
    3. SONY. AIBO Robot. Available from: http://support.sony-europe.com/aibo.
    4. SONY. QRIO Robot. Available from: http://www.sony.net/Fun/design/history/product/2000/sdr-4x.html.
    5. 王侯禕, 多足球機器人之策略設計, in 電機工程學系博士班. 2008, 淡江大學. p. 90.
    6. 朱建勳, 保全防災機器人團隊之即時影像處理系統, in 電機工程學系碩博士班. 2007, 國立成功大學. p. 101.
    7. 禚建威, 居家環境清潔機器人, in 工程科學系碩博士班. 2007, 國立成功大學.p. 78.
    8. Fan, L., et al. An automatic control system for eod robot based on binocular vision position. in Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on. 2007.
    9. 林任宏, 以視覺為基礎之移動自主定位系統, in 電機工程所. 2005, 國立中正大學. p. 77.
    10. 陳俊嘉, 即時影像追蹤之自走車設計, in 電機工程研究所. 2007, 國立中央大學. p. 84.
    11. 陳冠維, 道路及行車狀況偵測之單眼電腦視覺技術研究, in 資訊工程研究所.2005, 國立中央大學. p. 87.
    12. 陳意翔, 具智慧型停車功能車型機器人之設計與研製, in 電機工程學系碩博士班. 2002, 國立成功大學. p. 120.
    13. 廖名揚, 應用即時影像及模糊pid 控制自走車於無線攔截任務, in 航空太空工程學系碩博士班. 2007, 國立成功大學. p. 72. 75
    14. 鄭佳其, 應用即時影像處理於導盲磚辨識之自走車, in 工程科學系碩博士班. 2009, 國立成功大學. p. 111.
    15. 張經民, 以新型距離探測系統完成環境辨識和即時車型機器人控制, in 電機工程研究所. 2005, 國立中央大學. p. 118.
    16. 吳志祥, 應用全方位移動機器人搜尋音源方位, in 工程科學系碩博士班.2006, 國立成功大學. p. 85.
    17. 薛宏偉, 全方位移動式小型足球機器人開發, in 機械工程研究所. 2005, 長庚大學. p. 85.
    18. 鐘啟豪, 全方位移動機器人應用於環境地圖建立, in 工程科學系碩博士班.2009, 國立成功大學. p. 71.
    19. 邓旭玥, 易建强, and 赵冬斌, 一种全方位移动机器人的运动学分析. 機器人,2004. 26(1): p. 49-53.
    20. Kyung-Seok, B., K. Sung-Jae, and S. Jae-Bok. Design of continuous alternate wheels for omnidirectional mobile robots. in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. 2001.
    21. Jiali, S. and H. Huosheng. Visual Navigation of a Museum Guide Robot. in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on. 2006.
    22. Ching-Chih, T., et al. Autonomous navigation of an indoor tour guide robot. in Advanced robotics and Its Social Impacts, 2008. ARSO 2008. IEEE Workshop on. 2008.
    23. Kuo-Hung, C., et al. Multisensor-based outdoor tour guide robot NTU-I. in SICE Annual Conference, 2008. 2008.
    24. Dae Young, K. and Y. Keon Young. A user-steered guide robot for the blind. in Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on. 2009.
    25. Microchip, PIC16F877A datasheet.
    26. Rafael C. Gonzalez, R.E.W., Digital image processing. 2002.
    27. Chang, M.-S., Intelligent Outdoor Clean Robot with Friendly Human-Robot 76 Interface System, in Department of Engineering Science. 2010, National Cheng Kung University.
    28. Sunghwan, A. and C. Wan Kyun. Efficient SLAM algorithm with hybrid visual map in an indoor environment. in Control, Automation and Systems, 2007. ICCAS '07. International Conference on. 2007.
    29. G. Gomez, M.S., L.E. Sucar, On selecting an appropriate colour space for skin detection. Vol. 2313. 2002.
    30. 鐘國亮, 影像處理與電腦視覺. 2006.
    31. Webster, R.W. and W. Yong. An intelligent mobile robot golfing system using binocular stereo vision. in Pattern Recognition, 1992. Vol.I. Conference A: Computer Vision and Applications, Proceedings., 11th IAPR International Conference on. 1992.
    32. Nguyen Xuan, D., Y. Bum-Jae, and O. Sang-Rok. Visual navigation for indoor mobile robots using a single camera. in Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on. 2005.
    33. Ouerhani, N. and H. Hugli. Robot self-localization using visual attention. in Computational Intelligence in Robotics and Automation, 2005. CIRA 2005. Proceedings. 2005 IEEE International Symposium on. 2005.
    34. Kameoka, K., S. Uchikado, and S. Lili. Visual Guidance for a Mobile Robot with a Camera. in TENCON 2006. 2006 IEEE Region 10 Conference. 2006.
    35. Sahin, E. and P. Gaudiano. Development of a visual object localization module for mobile robots. in Advanced Mobile Robots, 1999. (Eurobot '99) 1999 Third European Workshop on. 1999.
    36. Xinqian, B., et al. Design of a visual guiding system for IAUV docking. in Mechatronics and Automation, 2009. ICMA 2009. International Conference on. 2009.
    37. Lazar, C. and A. Burlacu. Modeling of visual servo open-loop for robot manipulators. in Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on. 2008.
    38. Shigang, Y. and F.C. Rind. Near range path navigation using LGMD visual 77 neural networks. in Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. 2009.
    39. De, X., et al., A New Active Visual System for Humanoid Robots. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2008. 38(2): p.320-330.
    40. 王柏崴, 機器人之智慧型充電站與電源管理, in 工程科學系碩博士班. 2008,國立成功大學. p. 76.
    41. 王進德, 類神經網路與模糊控制理論入門與應用. 2007.

    下載圖示 校內:立即公開
    校外:2011-08-02公開
    QR CODE