| 研究生: |
呂柏甫 Lu, Po-Fu |
|---|---|
| 論文名稱: |
燒結促進劑對0.93(Mg0.7,Zn0.3)TiO3-0.07CaTiO3介電陶瓷微波特性之影響與應用 Effects of Added Sintering Aids on Microwave Dielectric Properties of 0.93(Mg0.7,Zn0.3)TiO3-0.07CaTiO3 Ceramics and Applications |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 介電陶瓷 |
| 外文關鍵詞: | 0.93(Mg0.7,Zn0.3)TiO3-0.07CaTiO3 |
| 相關次數: | 點閱:47 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文內將討論0.93(Mg0.7Zn0.3)TiO3-0.07CaTiO3介電陶瓷材料,分別藉由添加不同燒結促進劑B2O3與V2O5,探討產生的液相對其微波特性的影響。實驗結果顯示,添加0.25wt%的B2O3可有效降低燒結溫度到1200℃,此時可得介電特性εr~23.58,Q×f ~74100 (8.9GHz),τf ~+1.41 (ppm/℃)。
另外,本論文以FR4、氧化鋁、0.93(Mg0.7Zn0.3)TiO3-0.07CaTiO3為基板,製作一個濾波器,利用電腦軟體模擬與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。
The microwave properties of 0.93(Mg0.7Zn0.3)TiO3-0.07CaTiO3 dielectric ceramic materials are discussed in this paper. By adding different sintering aids B2O3 andV2O5, we studied the effects of liquid-phase aids for the microwave properties of 0.93(Mg0.7Zn0.3)TiO3-0.07CaTiO3. The experimental results showed that of 0.93(Mg0.7Zn0.3)TiO3-0.07CaTiO3 with 0.25wt% B2O3 addition could efficiently be reduced the sintering temperature from 1300℃ to 1200℃ and the dielectric properties of the ceramics were εr~23.58,Q×f ~74100(8.9GHz) and τf ~+1.41(ppm/℃).
In addition, a stacked stepped-impedance resonator filter on FR4, Al2O3 and 0.93(Mg0.7Zn0.3)TiO3-0.07CaTiO3 substrates were fabricated. The experimental measurements demonstrate that the ceramic 0.93(Mg0.7Zn0.3)TiO3-0.07CaTiO3 with the sintering aids are applicable for microwave applications because of their superior microwave properties of low loss, smaller device area, high Q×f value and high relative dielectric constant substrate.
[1] H. Ouchi and S.Kawashima, "Dielectric Ceramics for Microwave Application," Pro. of the 6th meeting on Ferroelectricity, Kobe, Jpn. J.Appl. Phys., vol. 24, p. 60, 1985.
[2] G. Wolfram and H. E. Goble, "Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z=2)," Materials Research Bulletin, vol. 16, pp. 1455-1463 November 1981.
[3] S. NISHIGAKI, et al., " Microwave dielectric properties of (Ba,Sr)O–Sm2O3–TiO2 ceramics.," J. AM. Ceram. Soc., vol. 66, pp. 1405 - 1410, 1987.
[4] H. M. O. B. JR, et al., "A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss," J. AM. Ceram. Soc., vol. 57, pp. 450-453, October 1974.
[5] Okaya, "The rutile microwave resonator," Proc. IRE, vol. 48, p. 1921, 1960.
[6] M. T. Sebastian, Dielectric Materials for Wireless Communication: Elsevier Science Publishing Company, 2008.
[7] S. W. Hao Su, "Studies on the (Mg,Zn)TiO3-CaTiO3 microwave dielectric ceramics," Materials Letters, vol. 59, pp. 2337 - 2341, 2005.
[8] R. C. Kell, et al., "High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss," J. AM. Ceram. Soc., vol. 56, pp. 352-354, July 1973.
[9] T. Takada, et al., "Effect of Glass Additions on BaO–TiO2–WO3 Microwave Ceramics," J. AM. Ceram. Soc., vol. 77, p. 1909, 1994.
[10] T. Takada, et al., "Effects of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications," J. AM. Ceram. Soc., vol. 77, pp. 2485-2488, September 1994.
[11] 魏炯權, 電子材料工程: 全華出版社, 2001.
[12] 郭展綱, 燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用: 國立成功大學碩士論文, 2004.
[13] W. J. Huppmann and G. Petzow, "Sintering processes," New York: Plenum Pr-ess, pp. 189-202, 1979.
[14] V. N. Eremenko, et al., Liquid phase sintering: New York: Consultants Bureau, 1970.
[15] K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
[16] J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-interingof jagged particles," J. AM. Ceram. Soc., vol. 53, pp. 406-409, 1970.
[17] W. J. Huppmann and G. Petzow, "The Role of Grain and Phase Boundaries in Liquid-Phase Sintering " Berichte der Bunsengesellschaft fur Physikalische Chemie, vol. 82, pp. 308-312, 1978.
[18] R. M. German, Liquid phase sintering.: New York: Plenum Press, 1985.
[19] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," J. Mater. Sci., vol. 24, pp. 500-504, 1989.
[20] D. W. Richerson, Modern ceramic engineering properties, processing and use in design: M.Dekker, 1992.
[21] 羅清文, La(Mg1/2Ti1/2)O3 介電陶瓷之微波特性改善及其應用: 國立成功大學碩士論文, 2004.
[22] 吳朗, 介電陶瓷: 全欣, 1996.
[23] Y. M. Chiang, et al., Physical Ceramics: Principles for Ceramic Science and Engineering: John Wiley & Sons 1996.
[24] D. M. Pozar, Microwave engineering: Addison-Wesley, 1998.
[25] D. Kajfez, et al., "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE. Trans. Microwave Theory Tech., vol. 32, pp. 1609-1616, Dec 1984.
[26] D. Kajfez, "Basic principle give understanding of dielectric waveguides and resonators," Microwave System News., vol. 13, pp. 152-161, 1983.
[27] D. Kajfez and P. Guillon, Dielectric resonators: New York: Artech House, 1989.
[28] S. B. Cohn, "Parallel-coupled transmission-line-resonator filters," Microwave Theory and Techniques, vol. 6, pp. 223-231, 1958.
[29] E. G. Cristal and S. Frankel, "Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters," IEEE Trans. Microwave Theory Tech, vol. 20, pp. 719-728, 1972.
[30] D. M. Pozar, Microwave engineering: Addison-Wesley, 1998.
[31] J. R. Lee, et al., "New Compact Bandpass Filter Using Microstrip λ/4 Resonators with Open Stub Inverter," IEEE Microwave and Guide Wave Lett., vol. 10, p. 12, 2000.
[32] 張家瑋, 開迴路諧振型式GSM微帶線雙頻濾波器之設計: 國立成功大學碩士論文, 2007.
[33] O. V. Karpova, "On an absolute method of measurement of dielectric properties of a solid using a Π-shaped resonator," Soviet Phys, p. 220, 1959.
[34] W. E. Courtney, "Analysis and evaluation of a method of measuring the com-plex permittivity and permeability of microwave insulators," IEEE Trans. Microwave Theory Tech, vol. MTT-18, pp. 476-485, 1970.
[35] S. H. Chao, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 519 - 526 Jun 1985.
[36] Y. Kobayashi and N. Katoh, "Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method," IEEE Trans. Microwave Theory Tech, vol. MTT-33, pp. 586-592, 1985.
[37] P. Wheless and D. Kajfez, "The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators," presented at the IEEE MTT-S Symposium Dig., 1985.
[38] D. Kajfez and P. Guillon, Dielectric resonators.: New York: Artech House, 1989.
[39] B. W. Hakki and P. D. Coleman, "A dielectric resonator method of measure-ng inductive capacities in the millimeter range," IEEE Trans. Microwave Theory Tech, vol. MTT-8, pp. 402-410, 1960.
[40] Y. Kobayashi and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE Trans. Microwave Theory Tech.,vol. MTT-28, pp. 1077-1085, 1980.
[41] C. L. Huang and S. S. Liu, "Microwave dielectric properties of a new ceramic system (1-x)(Mg0.95Zn0.05)TiO3-xCaTiO3 at microwave frequencies," Materials Letters, vol. 62, pp. 3773-3775, 15 August 2008.