簡易檢索 / 詳目顯示

研究生: 蔡亦哲
Tsai, Yi-Jhe
論文名稱: 磷光材料摻雜於高分子太陽能電池之研究
Investigation of phosphorescent material-doped polymer solar cell
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 99
中文關鍵詞: 高分子太陽能電池磷光材料摻雜
外文關鍵詞: Polymer solar cell, Phosphorescent material, Doping
相關次數: 點閱:66下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,為了提升元件轉換效率我們將不同的磷光材料分別摻雜於主動層中製作高分子太陽能電池。磷光材料Ir(ppz)3、Ir(mppy)3、Ir(piq)2(acac)分別摻雜於P3HT和ICBA中形成塊材結構,使三重態中產生更多激子。由於激子在三重態的存活時間較在單重態長,因此能夠有更多的載子到達接面,使元件的短路電流大幅提升。除此之外,我們透過改變磷光材料的摻雜濃度及主動層的退火參數來獲得最佳化的元件轉換效率。雖然在主動層摻雜磷光材料能延長激子存活時間使電流改變,但是會破壞原本主動層的型態,因此元件的轉換效率必須在兩者中作取捨並最佳化。這有可能會造成摻雜磷光材料於主動層中卻使元件效率衰減的情況。所以我們探討不同磷光材料對元件特性的影響,像是載子傳輸的能力、主動層的表面型態、磷光材料在主動層的分布及延長激子存活時間等等。在本論文中摻雜Ir(ppz)3在其濃度為0.1wt%時有最好的轉換效率7.08%,其短路電流為 12.4 mA/cm2、開路電壓為0.85V、填充因子為66.7%。

    In this thesis, we fabricated the polymer solar cells with doping different phosphorescent materials in active layer to enhance power conversion efficiency. The phosphorescent materials (Ir(ppz)3, Ir(mppy)3, Ir(piq)2(acac)) was respectively doped into the bulk heterojunction layer of P3HT and ICBA blend to form more excitons in the triplet state. Triplet-state excitons have longer lifetimes than singlet-state excitons. Therefore, more carriers were collected through the dissociation of excitons at the interface, resulting in the significant improvement of JSC. In order to optimize the device performance, we investigate the doping concentration of phosphorescent material and thermal annealing parameter of active layer. However, doping phosphorescent material is a trade-off between extend the exciton lifetime and damage original morphology in PCE of polymer solar cell. It is possible that decrease PCE of device when doping phosphorescent material. So we investigate the different phosphorescent materials carrier transport characteristics, surface morphology of active layer, distribution in active layer, and extended excitons lifetime. The optimal performance was doping 0.1wt% Ir(ppz)3 in P3HT:ICBA, which JSC is 12.4 mA/cm2, VOC is 0.85V, FF is 66.7%, and PCE is 7.08%.

    摘 要 I Abstract II 誌謝 IV Content V Table Captions IX Figure Captions XI Chapter 1 Introduction 1 1-1 Background 1 1-1-1 Progress of Organic Solar Cell 2 1-1-2 Singlet State and Triplet State 3 1-2 Motivation 5 1-3 Organization 6 Chapter 2 Operation Principle 7 2-1 Solar Spectrum 7 2-2 Mechanism of Inorganic Solar Cell 8 2-3 Inorganic Solar Cell Characteristics 9 2-3-1 Open-Circuit Voltage (VOC) 9 2-3-2 Short-Circuit Current (ISC) 9 2-3-3 Fill Factor (FF) 10 2-3-4 Power Conversion Efficiency (PCE) 10 2-4 Mechanism of Organic Solar Cell 11 2-4-1 Photo-excitation into Excitons 12 2-4-2 Excitons Migration to Interfaces 12 2-4-3 Dissociated Charges 12 2-4-4 Charge Migration to Electrodes 13 2-5 Organic Solar Cell Characteristics 13 2-5-1 Dark Current Characteristics 13 2-5-2 Open-Circuit Voltage (VOC) 14 2-5-3 Short-Circuit Current (ISC) 14 2-5-4 Fill Factor (FF) 15 2-5-5 Power Conversion Efficiency (PCE) 16 Chapter 3 Experiment 17 3-1 Structure 17 3-2 Materials of Organic Solar Cell 17 3-3 Process of Device Fabrication 19 3-3-1 Pre-Cleaning ITO Substrate 19 3-3-2 UV Ozone Treatment of ITO Surface 19 3-3-3 Fabrication of Hole Transport Layer 20 3-3-4 Fabrication of Active Layer 20 3-3-5 Fabrication of Cathode 20 3-4 Measurements 20 3-4-1 Current-Voltage Measurement System 21 3-4-2 UV-Vis absorption spectrum 21 3-4-3 External Quantum Efficiency 21 3-4-4 Atomic Force Microscope 22 3-4-5 Space Charge Limited Current 22 3-4-6 Time-reserved Photoluminescence 23 3-4-7 Secondary Ion Mass Spectroscopy 23 Chapter 4 Results and Discussions 24 4-1 Device with Doping Ir(ppz)3 24 4-1-1 Ir(ppz)3 Doping Concentration 24 4-1-2 Ir(ppz)3 Annealing Treatment 25 4-1-3 UV-Vis Absorption Spectrum 26 4-1-4 External Quantum Efficiency 27 4-1-5 Doping Concentration of AFM 27 4-1-6 Doping Concentration of SCLC 28 4-1-7 Time-reserved Photoluminescence 29 4-1-8 Annealing Treatment AFM 30 4-1-9 Annealing Treatment SCLC 31 4-1-10 Secondary Ion Mass Spectroscopy 31 4-2 Device with Doping Ir(mppy)3 32 4-2-1 Ir(mppy)3 Doping Concentration 32 4-2-2 Ir(mppy)3 Annealing Treatment 33 4-2-3 UV-Vis Absorption Spectrum 34 4-2-4 External Quantum Efficiency 34 4-2-5 Doping Concentration AFM 35 4-2-6 Doping Concentration SCLC 35 4-2-7 Time-reserved Photoluminescence 36 4-2-8 Annealing Treatment AFM 37 4-2-9 Secondary Ion Mass Spectroscopy 38 4-2-10 Annealing Treatment SCLC 38 4-3 Device with Doping Ir(piq)2(acac) 39 4-3-1 Ir(piq)2(acac) Doping Concentration 39 4-3-2 Ir(piq)2(acac) Annealing Treatment 40 4-3-3 UV-Vis Absorption Spectrum 42 4-3-4 External Quantum Efficiency 42 4-3-5 Doping Concentration AFM 42 4-3-6 Doping Concentration SCLC 43 4-3-7 Time-reserved Photoluminescence 44 4-3-8 Annealing Treatment AFM 44 4-3-9 Secondary Ion Mass Spectroscopy 45 4-3-10 Annealing Treatment SCLC 45 Chapter 5 Conclusions 47 References 48

    1. L. Blankenbrug, K. Schultheis, H. Schache, S. Sensfuss, and M. Schrödner, “Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells,” Sol. Energy Mater. Sol. Cells, vol. 93, pp. 476-483, 2009.
    2. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183-185, 1986.
    3. N. S. Sacriciftci, L, Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, vol. 258, pp. 1474-1476, 1992.
    4. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater., vol. 4, pp. 864–868, 2005.
    5. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater., vol. 15, pp. 1617–1622, 2005.
    6. G. J. Zhao, Y. J. He, and Y. Li, “6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization,” Adv. Mater., vol. 22, pp. 4355–4358, 2010.
    7. J.-L. Wu, F.-C. Chen, M.-K. Chuang, and K.-S. Tan, “Near-infrared laser-driven polymer photovoltaic devices and their biomedical applications,” Energy Environ. Sci., vol. 4, pp. 3374–3378, 2011.
    8. T.-Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, and R. Gaudian, “Highly efficient polycarbazole-based organic photovoltaic devices,” Appl. Phys. Lett., vol. 95, pp. 063304, 2009.
    9. G. Namkoong, J. Kong, M. Samson, I.-W. Hwang, and K. Lee, “Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells,” Org. Electron., vol. 14, pp. 74–79, 2013.
    10. M. Al-lbrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett., vol. 86, pp. 201120, 2005.
    11. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3- hexylthiophene) and soluble fullerene,” Appl. Phys. Lett., vol. 86, pp. 063502, 2005.
    12. M. R. Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1- (3-methoxycarbonyl)-propyl-1- phenyl- (6,6) C61 blends,” Appl. Phys. Lett., vol. 87, pp. 083506, 2005.
    13. Z. Li, H. C. Wong, Z. Huang, H. Zhong, C. H. Tan, W. C. Tsoi, J. S. Kim, J. R. Durrant, and J. T. Cabral, “Performance enhancement of fullerene-based solar cells by light processing,” Nat. Commun., vol. 4, pp. 2227, 2013.
    14. Y. Zhao, X. Guo, Z. Xie, Y. Qu, Y. Geng, and L. Wang, “Solvent vapor-induced self assembly and its influence on optoelectronic conversion of poly(3-hexylthiophene): methanofullerene bulk heterojunction photovoltaic cells,” J. Appl. Polym. Sci., vol. 111, pp. 1799-1804, 2009.
    15. E. Verploegen, C. E. Miller, K. Schmidt, Z. Bao, and M. F. Toney, “Manipulating the morphology of P3HT-PCBM bulk heterojunction blends with solvent vapor annealing,” Chem. Mat., vol. 24, pp. 3923-3931, 2012.
    16. S. Miller, G. Fanchini, Y.-Y. Lin, C. Li, C.-W. Chen, W.-F. Su, and M. Chhowalla, “Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing,” J. Mater. Chem., vol. 18, pp. 306-312, 2008.
    17. L. Chang, H. W. A. Lademann, J.-B. Bonekamp, K. Meerholz, and A. J. Moule, “Effect of trace solvent on the morphology of P3HT:PCBM bulk heterojunction solar cells,” Adv. Funct. Mater., vol. 21, pp. 1779-1787, 2011.
    18. D. M. Lyons, R. J. Ono, C. W. Bielawski, and J. L. Sessler, “Porphyrin–oligothiophene conjugates as additives for P3HT/PCBM solar cells,” J. Mater. Chem., vol. 22, pp. 18956-18960, 2012.
    19. B. Peng, X. Guo, Y. Zou, C. Pan, and Y. Li, “Performance improvement of annealing-free P3HT:PCBM-based polymer solar cells via 3-methylthiophene additive,” J. Phys. D-Appl. Phys., vol. 44, pp. 365101, 2011.
    20. M. Aydin and D. L. Akins, Vibroelectronic properties of functionalized single-walled carbon nanotubes and double-walled boron nitride nanotubes, INTECH, 2013, p. 57.
    21. J. C. Koziar , D. O. Cowan, “Photochemical heavy-atom effects,” Accounts Chem. Res., vol. 11, pp. 334-341, 1978.
    22. D.-H. Lee, Y.-P. Liu, K.-H. Lee, H. Chae, and S. M. Cho, “Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes,” Org. Electron., vol. 11, pp. 427-433, 2010.
    23. H. Lee, J. Y. Kim, and C. Lee, “Improvement of power efficiency in phosphorescent white organic light-emitting diodes using p-doped hole transport layer,” Int. J. Photoenergy, vol. 2012, pp. 581421, 2012.
    24. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett., vol. 79, pp. 156-158, 2001.
    25. Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “High-performance polymer solar cells with solution-processed and environmentally friendly CuOx anode buffer layer,” ACS Appl. Mater. Interfaces, vol. 5, pp. 10658-10664, 2013.
    26. F. Cheng, G. Fang, X. Fan, H. Huang, Q. Zheng, P. Qin, H. Lei, and Y. Li, “Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer,” Sol. Energy Mater. Sol. Cells, vol. 110, pp. 63-68, 2013.
    27. S. H. Chang, C.-H. Chiang, Z.-L. Tseng, K.-Y. Chiu, C.-Y. Tai, and C.-G. Wu, “Unraveling simultaneously enhanced open-circuit voltage and short-circuit current density in P3HT:ICBA:2,3-pyridinediol blended film based photovoltaics,” J. Phys. D: Appl. Phys., vol. 48, pp. 195104, 2015.
    28. G. Winroth, D. Podobinski, and F. Cacialli, “Dopant optimization for triplet harvesting in polymer photovoltaics,” J. Appl. Phys., vol. 110, pp. 124504, 2011.
    29. J. Yu, J. Huang, H. Lin, and Y. Jiang, “Exciton diffusion length analysis of mixed donor materials in organic solar cells by doping with phosphorescent iridium complex,” J. Appl. Phys., vol. 108, pp. 113111, 2010.
    30. B. P. Rand, S. Schols, D. Cheyns, H. Gommans, C. Girotto, J. Genoe, P. Heremans, and J. Poortmans, “Organic solar cells with sensitized phosphorescent absorbing layers,” Org. Electron., vol. 10, pp. 1015-1019, 2010.
    31. Z. Wang and F. Zhang, “Effect of doping phosphorescent material and annealing treatment on the performance of polymer solar cells,” Int. J. Photoenergy, vol. 2013, pp. 273586, 2013.
    32. R. Milo and R. Phillips, Cell biology by the numbers, Garland Science, 2014, p.216.
    33. J. Jeong, Photovoltaic: measuring the sun, Laser Focus World website, 2009.
    34. S. M. Sze, Semiconductor devices: physics and technology-2nd ed, John Wiley and Sons, 1985.
    35. T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, and K. Ebihara, “Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system,” Sol. Energy Mater. Sol. Cells, vol. 67, pp. 389-395, 2001.
    36. R. Liu, “Hybrid organic/inorganic nanocomposites for photovoltaic cells,” Materials, vol. 7, pp. 2749, 2014.
    37. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2 % efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett., vol. 84, pp. 3013, 2004.
    38. V. D. Mihailetchi, P. W. M. Mlom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar celld,” J. Appl. Phys., vol. 94, pp. 6849, 2003.
    39. C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. Mackenzie, and R. H. Friend, “The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices,” J.Appl. Phys., vol. 92, pp. 4266, 2002.
    40. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater., vol. 11, pp. 374-380, 2001.
    41. A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganas, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative,” Appl. Phys. Lett., vol. 84, pp. 1609, 2004.
    42. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull., vol. 30, pp. 28-32, 2005.
    43. K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater., vol. 19, pp. 441-444, 2007.
    44. L. S. C. Pingree, B. A. MacLeod, and D. S. Ginger, “The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport,” J. Phys. Chem. C, vol. 21, pp. 7922-7927, 2008.
    45. A. A. Gorshelev, A. V. Naumov, I. Y. Eremchev, Y. G. Vainer, L. Kador, and J. Köhler, “Ortho-dichlorobenzene doped with terrylene—a highly photo-stable single-molecule system promising for photonics applications,” ChemPhysChem, vol. 11, pp. 182-187, 2010.
    46. H. Kanno, Y. Sun, and S. R. Forrest, “High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices,” Appl. Phys. Lett., vol. 86, pp. 263502, 2005.
    47. K. Furukawa, Y. Terasak, H. Ueda, and M. Matsumura, “Effect of a plasma treatment of ITO on the performance of organic electroluminescent devices,” Synth. Met., vol. 91, pp. 99-101, 1997.
    48. T. Kawai, Y. Maekawa, and M. Kusabiraki, “Plasma treatment of ITO surfaces to improve luminescence characteristics of organic light-emitting devices with dopants,” Surf. Sci., vol. 601, pp. 5276-5279, 2007.
    49. J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A, vol. 3, pp. 1027-1034, 1985.
    50. W. Song, S. K. So, D. Wang, Y. Qiu, and L. Cao, “Angle dependent X-ray photoemission study on UV-ozone treatments of indium tin oxide,” Appl. Surf. Sci., vol. 177, pp. 158-164, 2001.
    51. Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells”, J. Mater. Chem., vol. 18, pp. 2650-2652, 2008.
    52. Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, and Z. H. Lu, “Carrier mobility of organic semiconductors based on current-voltage characteristics,” J. Appl. Phys., vol. 107, pp. 034506, 2010.
    53. M. A. Lampert and P. Mark, Current injection in solids, Academic Press: New York, 1970.
    54. T.-Y. Huang, D. Patra, Y.-S. Hsiao, S. H. Chang, C.-G. Wu, K.-C. Ho, and C.-W. Chu, “Efficient ternary bulk heterojunction solar cells based on small molecules only,” J. Mater. Chem. A, vol. 3, pp. 10512-10518, 2015.
    55. M. A. Faist, S. Shoaee, S. Tuladhar, G. FA. Dibb, S. Foster, W. Gong, T. Kirchartz, D. DC. Bradley, J. R. Durrant, and J. Nelson, “Understanding the reduced efficiencies of organic solar cells employing fullerene multiadducts as acceptors,” Adv. Energy Mater., vol. 3, pp. 744–752, 2013.
    56. J.-H. Huang, Y.-S. Hsiao, E. Richard, C.-C. Chen, P. Chen, G. Li, C.-W. Chu, and Y. Yang, “The investigation of donor-acceptor compatibility in bulk-heterojunction polymer systems,” Appl. Phys. Lett., vol.103, pp. 043304, 2013.
    57. S. H. Chang, C. H. Chiang, H. M. Cheng, C. Y. Tai, and C. G. Wu, “Broadband charge transfer dynamics in P3HT:PCBM blended film,” Opt. Lett., vol. 38, pp. 5342-5345, 2013.
    58. Y. Xie, Y. Li, L. Xiao, Q. Qiao, R. Dhakal, Z. Zhang, Q. Gong, D. Galipeau, and X. Yan, “Femtosecond time-resolved fluorescence study of P3HT/PCBM blend films,” J. Phys. Chem. C, vol. 114, pp. 14590-14600, 2010.

    下載圖示 校內:2020-08-11公開
    校外:2020-08-11公開
    QR CODE