簡易檢索 / 詳目顯示

研究生: 林呈遠
Lin, Cheng-Yuan
論文名稱: 基於穩定器的量子電路動態斷言
Stabilizer Based Dynamic Assertions for Quantum Circuits (SBDAC for Quantum Circuits)
指導教授: 陳盈如
Chen, Yean-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 54
中文關鍵詞: 量子計算量子糾錯動態斷言量子傅立葉轉換量子相位計算量子糾纏態
外文關鍵詞: Quantum computing, Quantum debugging, Runtime assertion, Quantum Fourier transform(QFT), Quantum phase estimation(QPE), Entanglement state
相關次數: 點閱:112下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子電腦 (Quantum computing) 比起傳統電腦有更為強大的計算能力,他也被認為可以有希望解決傳統電腦上所遇到的計算瓶頸。所以即便在如今主流的量子電腦上仍有許多的問題要解決或是改進,仍有許多在量子點腦上的相關研究在進行,像是量子加密 (Quantum cryptography)、量子機器學習 (Quantum machine learning),或是二次約束優化問題 (quadratic unconstrained binary optimization, QUBO)。
    量子電腦能夠擁有比傳統電腦更為強大的計算能力,主要要歸功於量子位元(quantum bit, qubit) 上兩個特殊的特性,疊加態 (superposition) 和糾纏態 (entanglement)。如今的研究中大量使用這兩種特殊的特性來設計量子電路,但是在設計的同時,如何為量子程式進行偵錯儼然已經成為了一個潛在的問題。為量子電腦進行偵錯是一個困難的問題,主要是因為兩項原因,第一項是量子不可複製原理 (quantum non-cloning theorem),我們無法隨意地複製一個量子位元的狀態,第二是隨意地進行測量可能會導致一個或多個處於量子疊加態的量子位元坍縮成某一個狀態,基於上述兩個原因,除了設計量子電路外,如何為量子電路做偵錯也是重要的。
    在量子計算領域中,所有的運算都可以使用矩陣來進行表達。在過去的相關文獻中,有作者試圖使用矩陣的方式來為量子狀態做偵錯。但是在如今的量子電腦上,還不能進行矩陣運算,使用者必須將矩陣轉換成量子邏輯閘 (quantum gate),才可以運行在現今的量子電腦上,而從矩陣變成量子邏輯閘的過程是非常困難的,甚至有書籍指出這個問題如今仍然沒有辦法定義他是屬於哪一種難度的問題,甚至在如今的解決方法上仍可能只是一個大約近似的解決方法,所以在本篇論文中,我們分別為 Quantum Fourier transform(QFT), Quantum phase estimation(QPE), 特定的最大糾纏態(Specific maximally entanglment state) 設計它們各自的偵錯電路,除了希望能有驗證資源上的減少外,在最大糾纏狀態的偵測中,透過我們的偵錯電路可以知道是屬於狀態 (state) 還是相位 (phase) 的錯誤。
    本論文中的所有偵錯電路都是基於量子穩定器 (quantum stabilizer) 所組成的,並且本論文中的所提出的量子偵錯電路是可以直接由量子基本邏輯閘組成,不需要經過矩陣的分解,如此可以減少從矩陣轉換成量子邏輯閘上的不精確。

    Debugging quantum circuit has become a potential barrier because traditional runtime debugging techniques are feasible due to the quantum non-cloning theorem and measurement collapsing. Based on the concept of quantum dynamic runtime assertion, we propose the dynamic assertion circuit (DAC) based on stabilizer to detect the quantum Fourier transform (QFT), quantum phase estimation (QPE), and two specific maximally entanglement with arbitrary relative phase. Due to the related works’ DAC is based on the unitary matrix, the unitary matrix needs to be decomposed to the basic quantum gates in the Noisy Intermediate Scale Quantum (NISQ) real device and some books discuss that that most unitary matrix decomposition are very inefficiently. Thus, the DACs proposed in this paper is based on stabilizers, which can be composed by the basic quantum gates orininally. For all the SBDACs we proposed, we provide formal proofs to show
    that if the under-test quantum state is the correct state, the asserion bit should all be |0⟩ and our DAC should not affect the under-test quantum state.

    摘要:i 英文延伸摘要:ii 致謝:x 目錄:xi 表格:xiii 圖片:xiv 第一章. 緒論:1 1.1研究背景:1 1.2研究動機:1 1.3研究貢獻:2 1.4論文組織:2 第二章. 背景知識:3 2.1量子位元:3 2.1.1 布洛赫球:3 2.1.2 Tensor product:4 2.1.3 糾纏態與疊加態:5 2.2 量子邏輯閘:5 2.2.1 單一位元量子邏輯閘:6 2.2.2 雙位元量子邏輯閘:10 2.2.3 三位元量子邏輯閘:12 2.3量子穩定器(Quantum Stabilizer):13 2.4 Phase kick back:14 第三章. 相關文獻:16 3.1 用於驗證模式和發現量子程序中的錯誤統計斷言:16 3.2量子計算的動態運行斷言(dynamic runtime assertion)電路:16 3.3基於投影用於測試和偵錯量子程序的動態斷言:17 3.4精確與近似系統話量子動態運行斷言:17 第四章. 研究方法:19 4.1stabilizer-based DAC:20 4.1.1 |0>與|1>的SBDAC:20 4.1.2 |+>與|->的SBDAC:21 4.2任意相對相位的量子位元偵錯電路:21 4.3Quantum Fourier Transform:22 4.4Quantum Phase Estimation:25 4.4.1 QPE assertion scheme without "AND" operation:26 4.4.2 QPE assertion scheme with "AND" operation:29 4.5兩種特殊形式的糾纏態SBDAC:31 4.5.1 |w1> SBDAC:32 4.5.2 |w2> SBDAC:33 4.5.3 |w1>與|w2>tensor product SBDAC:34 第五章. 實驗與結果:36 5.1 Quantum Fourier Transform:36 5.2 Quantum Phase Estimation:37 5.2.1 QPE assertion without "AND" operation:37 5.2.2 QPE assertion with "AND" operation :41 5.3量子糾纏交換協議:46 5.4 GHZ state detection:50 第六章. 結論:51 References :53

    [1] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, et al. Qiskit: An open-source framework for quantum
    computing. Accessed on: Mar, 16, 2019.

    [2] Bikash K Behera, Swarnadeep Seth, Antariksha Das, and Prasanta K Panigrahi. Demonstration of entanglement purification and swapping protocol to design quantum repeater in ibm quantum computer. Quantum Information Processing, 18(4):1–13, 2019.

    [3] John S Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1(3):195, 1964.

    [4] Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Physical review letters, 70(13):1895, 1993.

    [5] Sayan Choudhury, Sreraman Muralidharan, and Prasanta K Panigrahi. Quantum teleportation and state sharing using a genuinely entangled six-qubit state. Journal of Physics A: Mathematical and Theoretical, 42(11):115303, 2009.

    [6] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):339–354, 1998.

    [7] Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute of Technology, 1997.

    [8] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. Going beyond bell's theorem. In Bell's theorem, quantum theory and conceptions of the universe, pages 69–72. Springer, 1989.

    [9] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

    [10] Yipeng Huang and Margaret Martonosi. Statistical assertions for validating patterns and finding bugs in quantum programs. In Proceedings of the 46th International Symposium on Computer Architecture, pages 541–553, 2019.

    [11] Sakshi Jain, Sreraman Muralidharan, and Prasanta K Panigrahi. Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. EPL (Europhysics Letters), 87(6):60008, 2009.

    [12] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. Projection-based runtime assertions for testing and debugging quantum programs. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–29, 2020.

    [13] Ji Liu, Gregory T Byrd, and Huiyang Zhou. Quantum circuits for dynamic runtime assertions in quantum computation. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1017–1030, 2020.

    [14] Ji Liu and Huiyang Zhou. Systematic approaches for precise and approximate quantum state runtime assertion. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 179–193. IEEE, 2021.

    [15] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

    [16] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

    [17] William K Wootters and Wojciech H Zurek. A single quantum cannot be cloned. Nature, 299(5886):802–803, 1982.

    下載圖示 校內:立即公開
    校外:2025-10-11公開
    QR CODE