| 研究生: |
李旻展 Li, Min-Zhang |
|---|---|
| 論文名稱: |
結合集水區與水質生光模式分析污染負荷對水庫透明度之影響:以阿公店水庫為例 Integrating watershed and bio-optical models for linking catchment loading to the depth of Secchi-disk: a case study in Agongdian Reservoir |
| 指導教授: |
張智華
Chang, Chih-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 198 |
| 中文關鍵詞: | 水質模式 、透明度 、污染負荷 、光學水質模式 、整合模式 |
| 外文關鍵詞: | Water Quality Modeling, Transparency, Loading, Secchi disk depth physical model, Intergrating Models |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
優養化為臺灣水庫常見的水質問題,大部分被判定為優養化水庫的主因是由於低透明度所造成,低透明度又與水中懸浮固體物有關,因此為改善水庫優養化問題,在磷與懸浮物質削減的選擇上,需透過完整的污染負荷到透明度的整合模式進行評估。台灣年降雨量大且集中,加上地形陡峭等先天因素,每逢雨季便會造成大量地表沖刷流入水庫,造成水庫水質劣化,提高水處理成本、影響用水標的,須為此建立完整的水庫水質模式、針對水庫污染來源進行分析、制定污染改善方案,以改善水庫水質。本研究結合本實驗室之前期研究成果,以阿公店水庫為例,結合集水區模式、承受水體模式與透明度光學物理模式,整合為水庫光學水質模式。
阿公店水庫由於屬青灰泥岩,每逢颱風暴雨將會造成集水區土壤侵蝕流失而進入水庫,造成水質惡化與水庫大量淤積,因此設有每年定期實施空庫排淤之操作,以延長水庫使用壽命,平時則引流自旗山溪進行水庫蓄水為主。由於阿公店水庫的操作特性,本研究亦將模擬時間分為空庫排淤期與蓄水期分開討論。
阿公店水庫集水區水理模式有良好的模擬結果,率定年與驗證年之R2分別為0.953及0.757,唯逢降雨量大的情況下,入流量模擬植接有高估的情況。推估阿公店集水區污染負荷來源,包含懸浮固體物、氨氮、硝酸鹽氮、亞硝酸鹽氮、總磷、TOC、BOD等七項污染物,以入庫溪流(點源)、非點源及越域引水三者當中,非點源與越域引水佔95%以上,而入庫溪流(點源均不到5%,顯示阿公店水庫污染主要受集水區非點源污染與越域引水所影響。CE-QUAL-W2模擬結果顯示,當水庫進流水來源主要為降雨時,水庫污染物濃度除葉綠素a與總有機碳外,其他污染物濃度會有明顯短暫提高;蓄水期初期主要進水來源為越域引水,各項污染物濃度亦有短暫提高跡象。
透明度光學水質模式為根據水中光敏物質與當時環境光場特性進行模擬。以阿公店模擬水質進行透明度演算,空庫排淤期有較好的模擬結果,而蓄水期較不理想,原因為透明度物理模式在高透明度情況常有準確性不佳的情況發生,且由於W2模擬大量出流水導致的底泥再懸浮現象較不理想,模擬透明度值於蓄水期後期有明顯上升的異常情況,因此本研究建立之整合模式不適用模擬出現出流水導致底泥再懸浮之情況。
由三項阿公店水庫負荷主要來源進行污染削減模擬,發現以營養鹽為削減目標的策略無法有效改善透明度與優氧化指數,而透過削減越域引水之懸浮固體物與總磷,最能有效改善透明度。
Eutrophication is a common water quality problem of reservoirs in south Taiwan, and most of reservoirs which was identified as the eutrophic reservoir because of low transparency instead of chlorophyll-a. The cause of low transparency are mainly high concentration of suspended solids instead of chlorophyll-a. The strategy of restoring eutrophic reservoirs must be based on science as integrating watershed and bio-optical models for liking catchment loading to the depth of Secchi disk to simulate different load reduction scenarios. Therefore, this study was integrating watershed model, receiving water model and Secchi disk depth physical model to develop an integrating model.
The result of HSPF watershed hydrological modeling is acceptable. The simulated total inflow rate is close to observed inflow rate. The R2 value of calibration and validation are 0.5929 and 0.7574 respectively. According to loading estimation result, the loading constituents includes SS, NH4-N, NO3-N, NO2-N, TP, TOC, and BOD¬. The sources of pollutant loading in Agongdian Reservoir are point source from residents, nonpoint source, and cross-watershed diversion. Nonpoint source and cross-watershed diversion are the main resources with more than 95% proportion, and point source with less than 5% proportion. The variation trend of total loading is similar to precipitation change.
There are three loading reduction scenarios are simulated in this study. (1) Point source control: SS is reduced from 200mg/L to 20mg/L. TOC is reduced from 3.93 to 0.8 mg/L. PO43- is reduced from 1.33 mg/L to 0.16 mg/L. BOD is reduced from 5.92 to 2 mg/L (2) Nonpoint source control: TP and TN emission are reduced to 70% in fruit land. (3) Cross-watershed diversion control: SS is reduced to 60% and TP is reduced to 80%. In the result, the cross–watershed diversion control is the most effective one. Agongdian Reservoir is identified as eutrophic due to overloading of SS loading which leads to low transparency.
Arst, H., & Arst, K. I. U. (2003). Optical properties and remote sensing of multicomponental water bodies: Springer Science & Business Media.
Bricaud, A., Morel, A., & Prieur, L. (1981). Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1), 43-53. doi:10.4319/lo.1981.26.1.0043
Bukata, R. P., Jerome, J. H., Kondratyev, K. Y., & Pozdnyakov, D. V. (1995). Optical properties and Remote Sensing of Inland and Coastal Waters. Boca Raton: CRC Press.
Cole, T. M., & Wells, S. A. (2011). CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.71 User Manual.
Davies-colley, R. J., & Vant, W. N. (1988). Estimation of optical-properties of water from Secchi disk depths. Water Resources Bulletin, 24(6), 1329-1335.
Duntley, S. Q. (1952). The visibility of submerged objects. Retrieved from San Diego:
Fleenor, W. E. (2001). Effects and control of plunging inflows on reservoir hydrodynamics and downstream releases. (Ph.D. dissertation), Univ. of Calif.,Davis,
Gallegos, C. L., Werdell, P. J., & McClain, C. R. (2011). Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research-Oceans, 116. doi:10.1029/2011jc007160
Gordon, H., & Morel, A. (1983). Remote assessment of ocean color for interpretation of satellite visible imagery: A review.
Gordon, H. R. (1989). Can the Lambert‐Beer law be applied to the diffuse attenuation coefficient of ocean water? Limnology and Oceanography, 34(8), 1389-1409.
Hakvoort, H., De Haan, J., Jordans, R., Vos, R., Peters, S., & Rijkeboer, M. (2002). Towards airborne remote sensing of water quality. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3), 171-183.
Hamilton, D. P., & Schladow, S. C. (1997). Prediction of water quality in lakes and reservoirs. Part I — Model description. Ecol. Modell, 96, 91-110. doi:doi:10.1016/S0304‐3800(96)00062‐2
Imberger , J., & Patterson, J. C. (1989). Physical limnology. Adv. Appl. Mech., 27, 303-475. doi:10.1016/S0065‐2156(08)70199‐6
Jerlov, N. G. (1976). Marine optics, 14.
Kirk, J. T. O. (1982). Prediction of optical water quality. Australian Academy of Science: Canberra, Australia, 26-30.
Kirk, J. T. O. (1988). Optical water quality - what does it mean and how should we measur it? J Water Pollut Con F, 60.
Kishino, M., Booth, C. R., & Okami, N. (1984). Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water. Limnology and Oceanography, 29(2), 340-349.
Kopelevich, O. V. (1983). Small-Parameter Model of Optical Properties of Seawater, Chapter 8 in Ocean Optics, vol 1: Physical Ocean Optics: Moscow: Nauka Pub.
Lee, Z. (1994). Visible-Infrared Remote-sensing Model. University of South Florida,
Lee, Z., Shang, S., Qi, L., Yan, J., & Lin, G. (2016). A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sensing of Environment, 177, 101-106. doi:10.1016/j.rse.2016.02.033
Lindenschmidt, K. E., & Hamblin, P. F. (1997). Hypolimnetic aeration in Lake Tegel Berlin. Water Res., 31(7), 1619-1628. doi:doi:10.1016/S0043‐1354(96)00407‐1
Mobley, C. D. (1994). Light and water: radiative transfer in natural waters: Academic press.
Morel, A. (1974). Optical properties of pure water and pure sea water. Optical aspects of oceanography, 1, 1-24.
Mueller, J. L., Fargion, G. S., McClain, C. R., Pegau, S., Zanefeld, J., Mitchell, B. G., . . . Stramska, M. (2003). Ocean optics protocols for satellite ocean color sensor validation, revision 4. Retrieved from
Perez‐Losada, J. (2001). A deterministic model for lake clarity: Application
to management of Lake Tahoe, California‐Nevada. (Ph.D. dissertation), Univ. of Calif., Davis
Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied optics, 36(33), 8710-8723.
Preisendorfer, R. W. (1961). Application of radiative transfer theory to light measurements in the sea. Union Geod. Geophys. Inst. Monogr., 10, 11-30.
Preisendorfer, R. W. (1986). Secchi disk science - Visual optics of natural waters. Limnology and Oceanography, 31(5), 909-926. doi:10.4319/lo.1986.31.5.0909
Prieur, L., & Sathyendranath, S. (1981). An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1. Limnology and Oceanography, 26(4), 671-689.
Roesler, C. S., Perry, M. J., & Carder, K. L. (1989). Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnology and Oceanography, 34(8), 1510-1523.
Sahoo, G. B., Schladow, S. G., & Reuter, J. E. (2010). Effect of sediment and nutrient loading on Lake Tahoe optical conditions and restoration opportunities using a newly developed lake clarity model. Water Resources Research, 46(10). doi:Artn W10505
10.1029/2009wr008447
Smith, R. C., & Baker, K. S. (1981). Optical properties of the clearest natural waters (200–800 nm). Applied optics, 20(2), 177-184.
Swift, T. J., Perez-Losada, J., Schladow, S. G., Reuter, J. E., Jassby, A. D., & Goldman, C. R. (2006). Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth. Aquatic Sciences, 68(1), 1-15. doi:10.1007/s00027-005-0798-x
Tyler, J. E. (1960). Radiance distribution as a function of depth in an underwater environment. Bull. Scripps Inst. Oceanogr., 7, 363-411.
Yacobi, Y. Z., Alberts, J. J., TakÁCs, M., & McElvaine, M. (2003). Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers: the impact of molecular size distribution. Journal of Limnology, 62(1). doi:10.4081/jlimnol.2003.41
王廷哲. (1999). 德基水庫與集水區整合水質模式之應用. (碩士), 國立中興大學, 台中市.
何嘉浚, & 林鎮洋. (2012). 呈層複合土壤 (Multi-soil Layering )水質淨化系統應用於河川或水庫集水區. 行政院環保署.
余岱璟. (2002). 石門水庫水質模擬與水理探討. (碩士), 國立中央大學, 桃園縣.
李建忠. (1996). HSPF應用於瑪家水庫優養潛勢分析之研究. (碩士), 國立成功大學, 台南市.
李鴻源, 黃良雄, 郭振泰, 許銘熙, & 楊錦川. (1990-1992). 水質保護綱要計畫-非點源污染防治計畫研究. Retrieved from 行政院環保署:
狄學賢. (2016). 結合水體生光性質與半解析光學理論模式模擬日月潭透明度. (碩士), 國立成功大學, 台南市.
林鑫怡. (2007). 曾文溪感潮河段水理與傳輸現象之模擬. (碩士), 國立臺南大學, 台南市.
唐太山. (2001). 曾文水庫二維水理水質之模擬與風險分析. (碩士), 國立臺灣大學, 台北市.
高正忠, & 廖述良. (1994a). 非點源總量管制評估模之建立與應用及群體計畫導向(I). Retrieved from 行政院環境保護署:
高正忠, & 廖述良. (1994b). 非點源總量管制評估模式之建立與應用及群體計畫導向(I). Retrieved from
張智華, & 黃韋旻. (2015). 探討水質對日月潭水色與澄清度之影響. 工業污染防治, 134, 19-38.
章瑜蓓. (2004). 二維水質模式之參數校正. (碩士), 國立中央大學, 桃園縣.
莊鎮維. (2012). 以CE-QUAL-W2模式模擬分析新山水庫優養化之原因. (碩士), 國立臺灣大學, 台北市.
郭振泰, 龍梧生, 楊州斌, & 羅浩文. (1998,1999,2000). 翡翠水庫水質模擬與應用(一)、(二)、(三). 翡翠水庫管理局委託: 台灣大學土木工程學研究所執行.
陳鴻傑. (2003). 曾文水庫集水區污染物傳輸及水庫水質模擬. (碩士), 國立臺灣大學, 台北市.
黃佳慧. (2005). 以HSPF營養鹽模組討論農業對水庫非點源污染負荷的貢獻. (碩士), 國立成功大學, 台南市.
黃韋旻. (2015). 以比濃度固有光學性質建立水庫水色及透明度模式之研究. (碩士), 國立成功大學, 台南市.
黃韋旻, 吳祐欣, & 張智華. (2015). 以生光性質與輻射傳輸評估高沉積物負荷水庫優養化與透明度之關連性:以南化水庫為例. Paper presented at the 2015環境資訊與規劃管理研討會, 中壢,台灣.
黃鈺真. (2001). HSPF模式應用於曾文水庫集水區非點源污染負荷之推估. (碩士), 國立成功大學, 台南市.
黃慶祥. (2006). 水庫水質與光學性質模式之建立及其應用. (碩士), 國立成功大學, 台南市.
經濟部水利署. (2006). 阿公店水庫水門操作.
劉正千, 張智華, 許華宇, 譚子健, & 溫清光. (2007). 應用 ISIS 高頻譜光學遙測影像於曾文水庫之水質監測. 科儀新知, 161, 29-42.
劉紀宏. (1999). 水庫入流污染物負荷量推估方法之研究. (碩士論文), 國立臺灣大學,
謝文雄. (2003). 水庫水位激烈變化下之水理水質模擬. (碩士), 國立中央大學, 桃園縣.
鍾佳玲. (2014). 利用CE-QUAL-W2模式模擬分析氣候變遷對於新山水庫水質衝擊. (碩士), 國立成功大學, 台南市.