簡易檢索 / 詳目顯示

研究生: 蕭宇宏
Shiau, Yeu-Horng
論文名稱: 應用階層式設計方法之小波視訊編碼晶片設計
Design of a Wavelet-based Video Codec with a Hierarchical Methodology
指導教授: 周哲民
Jou, Jer Min
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 256
中文關鍵詞: 視訊編解碼系統小波轉換
外文關鍵詞: video codec, wavelet transform
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來多媒體系統的相關產品與服務不斷推陳出新,為了要將多媒體的大量資料在有限的網路頻寬上傳輸以及儲存資料,高效能的資料壓縮方法之研發,變得愈來愈重要。目前已有許多視訊的標準編碼法被制定,例如: JPEG、MPEG、以及H.263等,這些編碼法包含許多的壓縮技術,例如:轉換編碼法、變動長度編碼法、以及移動向量估計與補償法。這些編碼法通常包含很多的數學運算,為了達到即時處理的應用,以硬體實現這些演算法將是十分重要的課題。一般而言,處理多媒體資料的演算法含有大量且多層的迴圈,為了要達到高效能的硬體架構,本篇論文首先提出一個階層式設計方法,用於階層式管線化系統的行為,發展高效能的硬體架構。這各階層式設計方法包含三個模型用來漸進式的完成系統硬體架構,三個模型分別是:階層式行為模型、虛擬元件模型、以及狀態轉移模型。
      接著本文介紹我們所發展的小波轉換(discrete wavelet transform, DWT)視訊編解碼系統,其中結合了小波影像壓縮技術以及移動向量估計與補償法。這個編碼法十分類似傳統餘弦轉換(discrete cosine transform, DCT)視訊編碼法,不同的是小波轉換視訊編碼法利用DWT替代DCT,同時採用JPEG2000標準中的EBCOT(Embedded Block Coding with Op-timized Truncation)熵編碼法壓縮小波轉換後的係數。而在消除畫面間時間累贅方面,我們使用之前所提出的灰色向量估計法(GrPS)作為移動向量估計演算法(motion estimation, ME)來加快搜尋速度,實驗數據顯示GrPS在各方面的總合皆優於其他的搜尋演算法。接下來,為了達到即時處理的應用,藉由上述的階層式設計方法將發展的小波視訊編碼法分成幾個主要的模組設計其高效能的硬體架構,這些模組分別是: DWT模組、EBCOT模組、以及ME模組。
      在小波模組的設計方面,我們針對正交二維小波正轉換提出一個摺疊式管線化架構,另外,針對正交二維小波反轉換提出一個樹狀方塊管線化架構,這兩種架構皆能降低儲存空間以及加速運算效能。而針對雙正交小波正反轉換提出高效能管線化架構,在一個時脈可以同時處理兩筆資料,並且同一個架構可以執行正轉換與反轉換的運算。實現數據顯示提出的架構可以應用在即時處理的系統上。在EBCOT模組設計方面,我們設計與實現一個高效能的硬體架構。 EBCOT主要分成兩個部分: context產生器以及MQ算數編碼。我們採用一個有效率的記憶體配置模式應用在context產生器中,使得讀取記憶體所需的時間為原來的1/4。在MQ算數編碼中,我們使用變動潛伏期(latency)的管線化方式加速運算的時間,實驗數據顯示經過此特殊管線化方法可以提升將近一倍的運算速度。因此適合用於即時處理的系統上。在ME模組設計方面,我們應用灰色預測來設計一個快速的灰色預測搜尋(GrPS)法,並提出實現此法的VLSI架構。此GrPS晶片包含大約54K個電晶體,面積為 ,能即時處理MPEG規格的影像。

     Recently, multimedia systems have become very popular. The fundamental characteristic of multimedia systems is that they incorporate continuous media, such as voice, fullmotion video, and graphics. To transmit these multimedia data through band-limited networks or for storage purpose, compression algorithms are needed to compress tremen-dous original visual information into more compact formats. Up to now, there have been many successful researches and standards for the compression of image and video signals, such as JPEG, MPEG, and H.263. The video coding standard inducted several compression techniques, such as transfer coding, variable-length coding (VLC), and motion estimation and compensation. The video coding system is a time-critical digital system. In order to meet the required real-time performance, the hardware implementation of video coding system becomes an important task. Generally, behavioral specifications of multimedia and/or digital signal processing systems contain a number of nested loops. To obtain high data rates for such systems, it is necessary to pipeline the behavior blocks, the loop bodies, and also the operations. In order to hierarchically pipeline a performance-constrained system, to develop a hierarchical system design methodology to shorten design and verification time becomes more and more important in high performance multimedia system designs.
     In this dissertation, we focus on the video coding system and the technologies adopted in them. We proposed a DWT-based video coding system which combined the DWT im-age compression and the motion estimation and compensation techniques. The system has very similar architecture as the traditional hybrid DCT video coding systems, like MPEG or H.263. The difference is that the DCT is replaced by the DWT, and since the basically different properties of the DWT from the DCT, such that the tree-like structure property and self-similarity between wavelet coefficients of different subbands, the following entropy coding algorithm for DCT coefficients may need to be changed for better compres-sion rate. In the proposed architecture, we adopted the MQ arithmetic coding, which is the technique used in JPEG2000 standard, as the entropy coding algorithm.
     In order to design and implement the DWT-based video coding system, we develop a hierarchical system design methodology for propagating constraints and hierarchically pipelining a performance-constrained system. The methodology is a synthesis-based approach where the three abstraction models: the hierarchical specification model, the virtual component model, and the super-state transition model, are adopted for gradually refining the define specification into the implementation. Adopting the hierarchical system design methodology, the DWT-based video coding system is partitioned into several core modules, the motion estimation (ME) module, the discrete wavelet transform (DWT) module, the inverse discrete wavelet transform (IDWT) module, and the embedded block coding with optimized truncation (EBCOT) module. In this dissertation, we design and implement these main core modules to meet the requirement for the real-time applications.
     In the design of the DWT, we proposed several 2-D DWT and IDWT architectures for orthogonal and biorthogonal wavelet systems. According to the results of our comparison, our architectures prove to be better than other existing architectures in the hardware cost and latency requirements. Because of its small storage size, regularity, and high performance, the architectures are suited to time-critical applications, such as MPEG-4 and JPEG-2000.
    In the design of the EBCOT, we design and implement a high performance architecture of the EBCOT. The EBCOT is divided into two parts, the context information generator and the MQ arithmetic coder. The context information generator adopted efficient memory architectures both in the state variable memory and the code block memory to reduce the required clock cycles of memory access. The MQ coder adopted the dynamic pipeline scheduling to reduce the latency of the pipeline stage. Thus the proposed architecture is suitable for the real-time applications.
     In the design of the ME, we first present a fast search algorithm, the grey prediction search (GrPS). With the aid of grey theory, the method can determine the motion vectors of image blocks more correctly and quickly. The experimental results show that the proposed algorithm performs better than other fast search algorithms in terms of picture quality, accuracy, computational complexity and coding efficiency. Then, we present a dedicated low-cost GrPS chip with 3-PE architecture to provide suitable solutions for MPEG-2 (720 pixels  480 lines, 30 frames/sec) in real time. Since GrPS performs better than other fast search algorithms, this low-cost GrPS chip is a good candidate for the real-time motion estimation.

    CHAPTER 1 Introduction.....................................................1 1.1 Discrete wavelet Transform..............................................3 1.2 Embedded Block Coding with Optimized Truncation.........................5 1.3 Block Motion Estimation.................................................6 1.4 Organization of the Dissertation........................................7 CHAPTER 2 Hierarchical System Design Methodology...........................8 2.1 Introduction............................................................8 2.2 Hierarchical System Design Methodology.................................10 2.3 Hierarchical Specification Model.......................................12 2.4 Hierarchical Scheduling and Component Assignment.......................16 2.5 Virtual Component Model................................................24 2.6 Cycle-accurate Scheduling and Performance Annotation...................29 2.7 Super-state Transition Model...........................................31 2.8 Concluding Remarks.....................................................35 CHAPTER 3 Design of the Wavelet Video Coding System.......................36 3.1 Introduction...........................................................36 3.2 The Wavelet Video Coding System........................................38  3.2.1 Wavelet Video Encoder..............................................38  3.2.2 Wavelet Video Decoder..............................................43 3.3 Design of the Wavelet Video Coding System..............................45  3.3.1 Hierarchical Specification Model of the Encoding System............45  3.3.2 Approximated-time Scheduling for the Encoding System...............52  3.3.3 Virtual Component Model of the Encoding System.....................55 3.4 Experiment Results.....................................................56 3.5 Concluding Remarks.....................................................57 CHAPTER 4 Orthogonal Wavelet Transform and Its Architectures..............58 4.1 Introduction...........................................................58 4.2 2-D Discrete Wavelet Transform.........................................60  4.2.1 Forward Discrete Wavelet Transform.................................60  4.2.2 Inverse Discrete Wavelet Transform.................................62 4.3 VLSI Architecture for 2-D DWT..........................................64  4.3.1 The proposed pipelined architecture for 2-D DWT....................64  4.3.2 Performance and Comparison.........................................71 4.4 VLSI Architecture for 2-D IDWT.........................................72  4.4.1 Tree-Block Processing for IDWT.....................................73  4.4.2 The proposed Architecture for 2-D IDWT.............................76   4.4.2.1 Column Filter..................................................77   4.4.2.2 Row Filter.....................................................82  4.4.3 Scalable Architecture for the IDWT.................................85  4.4.4 Results............................................................89 4.5 Concluding Remarks.....................................................90 CHAPTER 5 Design and Implementation of Biorthogonal DWT Module............91 5.1 Introduction...........................................................91 5.2 Lifting Scheme Discrete Wavelet Transform..............................93 5.3 Design of the DWT and IDWT Module......................................97  5.3.1 The hierarchical specification model...............................98  5.3.2 The virtual component model.......................................102 5.4 Filter architecture implemented by the filterbank structure...........108  5.4.1 Forward 5/3 Filter Architecture by the Filterbank.................109  5.4.2 Inverse 5/3 Filter Architecture by the Filterbank.................111 5.5 Filter architecture implemented by the lifting scheme.................112  5.4.1 Forward 5/3 filter Architecture by the lifting scheme.............113  5.4.2 Inverse 5/3 filter Architecture by the lifting scheme.............116 5.6 Scalability for 9/7 Biorthogonal Wavelet Transform....................118  5.6.1 Filter Bank Structure.............................................119  5.6.2 Lifting Scheme Structure..........................................121 5.7 Implementation and Results............................................124 5.8 Concluding Remarks....................................................127 CHAPTER 6 Design and Implementation of the EBCOT Module..................129 6.1 Introduction..........................................................129 6.2 EBCOT-T1 Algorithm....................................................132  6.2.1 Context Information Generator.....................................133  6.2.2 MQ Arithmetic Coding..............................................140 6.3 Design of the EBCOT Module............................................146  6.3.1 The hierarchical specification model..............................146  6.3.2 The virtual component model.......................................148 6.4 Architecture for Context Information Generator........................151  6.4.1 Data organization and memory arrangement..........................154  6.4.2 The architecture of three passes..................................157 6.5 Architecture for MQ Arithmetic Coder..................................161  6.5.1 The Data flow and non-pipeline scheduling of MQ coder.............162  6.5.2 The Datapath of the MQ Encoder....................................164  6.5.3 The Non-pipeline Controller for MQ Coder..........................167  6.5.4 The Dynamic pipeline Controller for MQ coder......................169 6.6 Hardware Implementation and Results...................................172 6.7 Concluding Remarks....................................................175 CHAPTER 7 Design and Implementation of the ME Module.....................176 7.1 Introduction..........................................................176 7.2 Block-Matching Algorithm..............................................178 7.3 The Grey Prediction Search Method.....................................181  7.3.1 Finding the Predicted Motion Vector...............................182  7.3.2 Determining the Final Motion Vector...............................185 7.4 Design of the ME Module...............................................189  7.4.1 The hierarchical specification model..............................189  7.4.2 The virtual component model.......................................190 7.5 Hardware Implementation for GrPS......................................193  7.5.1 Memory Banks......................................................198  7.5.2 Address Generators................................................199  7.5.3 Motion Vector Generator...........................................201  7.5.4 Controller........................................................207  7.5.5 VLSI Implementation...............................................207 7.6 Concluding Remarks....................................................213 CHAPTER 8 CONCLUSIONS AND FUTURE WORK....................................214 8.1 Conclusions...........................................................214 8.2 Future Work...........................................................216 REFERENCES.................................................................218  

    [1] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image Coding Using Wavelet Transform”, IEEE Trans. Image Processing, vol. 1, pp. 205-220, Apr. 1992.
    [2] T. Acharya, and P.Y. Chen, “VLSI implementation of a DWT architecture,” Proceedings of 1998 IEEE International Symposium on Circuits and Systems, pp. 272-275, May. 1998.
    [3] S. Bakshi, Synplicity Inc., and D. D. Gajski, “Performance-Constrained Hierarchiucal Pipelining for Behaviors, Loops, and Operations,” ACM Transactions on Design Automation of Electronic Systems, vol. 6, no. 1, pp. 1-25, Jan., 2001.
    [4] A. Cohen, I. Daubechies, and J.C. Feauveau, “Biorthogonal bases of compactly supported wavelets,” Commun Pure Appl. Math., pp. 485-500, 1992.
    [5] E. Chan and S. Panchanathan, “Motion estimation architecture for video compression,” IEEE Trans. on Consumer Electronics, vol. 39, no. 3, pp. 292-297, Aug. 1993.
    [6] C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete and continuous wavelet transforms: From single chip implementations to mappings on SIMD array computers,” IEEE Trans. Signal Processing, vol. 43, no. 5, pp. 759-771, 1995.
    [7] A. Costa, A. D. Gloria, P. Faraboschi and F. Passaggio, “A VLSI architecture for hierarchical motion estimation,” IEEE Trans. on Consumer Electronics, vol. 41, no. 2, pp. 248-257, May 1995.
    [8] H. Y. H. Chuang and L. Chen, “VLSI architecture for the fast 2-D discrete orthonormal wavelet transform,” Journal of VLSI Signal Processing, vol. 10, pp.225-236, 1995.
    [9] Jijun Chen and M. A. Bayoumi, “A Scalable Systolic Array Architecture for 2-D Discrete Wavelet Transform,” IEEE VLSI Signal Processing, pp. 303-312, 1995.
    [10] C. Chakrabarti and M. Vishwanath, “Architectures for wavelet transforms: A survey,” J. VLSI Signal Processing, vol. 14, pp. 171-192, 1996.
    [11] X. Chen, T. Zhou, Z. Qianlin, and M. Hao, “2-D DWT/IDWT Processor Design for Image Coding,” 2nd International Conference on ASIC, pp. 111–114, 1996.
    [12] T.-H. Chen, “A cost-effective three-step hierarchical search block-matching chip for motion estimation,” IEEE Journal of Solid-State Circuits, vol. 33, no. 8, pp. 1253-1258, 1998.
    [13] Y. Chu and S. J. Chen, “Efficient VLSI Architecture for 2-D Inverse Discrete Wavelet Transforms,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 524-527, July 1999.
    [14] C. Chakrabarti, and C. Mumford, “Efficient Realizations of Encoders and Decoders Based on the 2-D Discrete Wavelet Transform,” IEEE Trans. on VLSI Systems, pp. 289-298, Sep. 1999.
    [15] W.-H. Chang, Y.-S. Lee, W.-S. Peng, and C.-Y. Lee, “A line-based, memory efficient and programmable architecture for 2D DWT using lifting scheme,” Proceedings of 2001 IEEE International Symposium on Circuits and Systems, pp. IV330 –333, 2001.
    [16] I. Daubenchies, “Orthonormal Bases of Compactly Supported Wavelets”, Comn. Pure Appl. Math., vol. 41, pp. 906-966, 1988.
    [17] M. Ghanbari, “The cross-search algorithm for motion estimation,” IEEE Trans. Communications, vol. 38, no. 7, pp. 950-953, 1990.
    [18] A. Grzeszczak, M. K. Mandal, S. Panchanathan, “VLSI implementation of discrete wavelet transform,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, pp. 421-433, Dec. 1996.
    [19] B. R. Hunt, “Block-mode digital filtering of pictures,” Mathematical Biosciences, vol.11, pp. 343-354, 1971.
    [20] Y.-S. Jehng, L.-G. Chen and T.-D. Chiueh, “An efficient and simple VLSI tree architecture for motion estimation algorithms,” IEEE Trans. on Signal Processing, vol. 41, no. 2, pp. 889-900, Feb. 1993.
    [21] H.-M. Jong, L.-Gee Chen and T.-D. Chiueh, “Parallel architectures for 3-step hierarchical search block-matching algorithm,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 4, no. 4, pp. 407-416, Aug. 1994.
    [22] T. Koga, K. Iinuma, A. Iijima and T. Ishiguro, “Motion-compensated interframe coding for video conferencing,” in Proc. NTC81, New Orleans, L. A., 1981, pp. G5.3.1-G5.3.5.
    [23] G. Knowles, “VLSI architecture for the discrete wavelet transform,” Electronics Letters, vol. 26, pp. 1184-1185, 1990.
    [24] J. T. Kim, Y. H. Lee, T. Isshiki, and H. Kunieda, “Scalable VLSI Architectures for Lattice Structure-Based Discrete Wavelet Transform,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, pp. 1031-1043, Aug. 1998.
    [25] A. S. Lewis and G. Knowles, “VLSI Architecture for 2-D Daubechies Wavelet Transform Without Multipliers,” Electronics Letters, pp. 171-173, Jan. 1991.
    [26] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for block motion estimation,” IEEE Trans. Circuits and System for Video Tech., vol. 4, no. 4, pp. 438-442, 1994.
    [27] L.-K. Liu and E. Feig, “A block-based gradient descent search algorithm for block motion estimation in video coding,” IEEE Trans. Circuits and System for Video Tech., vol. 6, no. 4, pp. 419-422, 1996.
    [28] H. D. Lin, A. Anesko and B. Petryna, “ A 14-GOPs programmable motion estimator for H.26x video coding,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1742-1750, 1996.
    [29] J. Lu and M. L. Liou, “A simple and efficient search algorithm for block-matching motion estimation,” IEEE Trans. Circuits and System for Video Tech., vol. 7, no. 2, pp. 429-433, 1997.
    [30] L. Luo, C. Zou, X. Gao and Z. He, “A new prediction search algorithm for block motion estimation in video coding,” IEEE Trans. Consumer Electronics, vol. 43, no. 1, pp. 56-61, 1997.
    [31] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G Chen, “Lifting Based Discrete Waveley Transform Architecture for JPEG2000,” Proceedings of 2001 IEEE International Symposium on Circuits and Systems, pp.II-445-448, 2001.
    [32] H. G. Musmann, P. Pirsch and H.-J. Grallert, “Advances in picture coding,” Proc. of IEEE, vol. 73, pp. 523-548, 1985.
    [33] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674-693, July 1989.
    [34] S.A. Martucci and I. Sodagar, “Zerotree entropy coding of wavelet coefficients for very low bit rate video,” presented at Proc. 1996 IEEE Int. Conf. Image Processing, Lausanne, Switzerland, Sep. 1996.
    [35] A. N. Netravali and J. D. Robbins, “Motion compensated television coding-Part I,” Bell Syst. Tech. Journal, vol. 58, pp. 631-670, 1979.
    [36] A. N. Netravali and B. G. Haskell, Digital Pictures Representation and Compression, New York:Plenum, 1988.
    [37] S. H. Nam and M. K. Lee, “Flexible VLSI architecture of motion estimation estimator for video image compression,” IEEE Trans. on Circuits and Systems-Part II, vol. 43, no. 6, pp. 467-470, June 1996.
    [38] K.K. Parhi and T. Nishitani, “VLSI architectures for discrete wavelet transforms,” IEEE Trans. VLSI Systems, vol. 1, no. 2, pp. 191-202, 1993.
    [39] C. Podilchuk and W. Zeng, “Image-adaptive watermarking using visual models,” IEEE Journal on Selected Areas in Communications, vol. 10, no. 4, pp. 525-540, May 1998.
    [40] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Trans. Circuits and System for Video Tech., vol. 6, no. 3, pp. 313-317, 1996.
    [41] J.M. Shapiro, “An embedded wavelet hierarchical image coder,” Proc. IEEE Int. Conf. ASSP, vol. 4, pp. 657-660, Mar. 1992.
    [42] J.M. Shapiro, “An embedded hierarchical image coder using zerotrees of wavelet coefficients,” Data Compression Conf., pp. 214-223, Mar. 1993.
    [43] J.M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Single Processing, vol. 41, pp. 3445-3462, Dec. 1993.
    [44] A. Said and W.A. Pearlman, “Image compression using the spatial-orientation tree,” IEEE Int. Symp. Circuits and Systems, vol. 1, pp. 279-282, May 1993.
    [45] M. H. Sheu, M. D. Shieh and S. F. Cheng, “A Unified VLSI Architecture for Decomposition and Synthesis of Discrete Wavelet Transform,” IEEE 39th Midwest symposium on Circuits and Systems, pp. 113–116, 1996.
    [46] K. Suguri et al., “ A real-time motion estimation and compensation LSI with wide search range for MPEG2 video encoding,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1733-1741, 1996.
    [47] A. Said and W.A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits and Systems for Video Technology, vol. 6, pp. 243-250, June 1996.
    [48] W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal wavelets,” Appl. Comput. Harmon. Anal., pp. 186-200, 1996.
    [49] A. Said and W.A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits and Systems for Video Technology, vol. 6, pp. 243-250, June 1996.
    [50] I. Sodagar, H.-J. Lee, P. Hatrack, and Y.-Q. Zhang, “Scalable wavelet coding for synthetic/natural hybrid images,” IEEE Trans. Circuits and Systems for Video Technology, vol. 9, pp. 244-254, Mar. 1999.
    [51] V. Spiliotopoulos, N.D. Zervas, Y. Andreopoulos, G. Anagnostopoulos, and C.E. Goutis, “Quantization effect on VLSI implementations for the 9/7 DWT filters,” Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1197-1200, 2001.
    [52] D. Taubman and A. Zakhor, “Multi-rate 3-D subband coding of video,” IEEE Trans. Image Processing, vol. 3, no.5, pp. 572-588, September 1994.
    [53] D. Taubman and A. Zakhor, “A common framework for rate and distortion based scaling of highly scalable compressed video,” IEEE Trans. Circuits and Systems for Video Technology, vol. 6, no. 4, pp. 329-354, Aug. 1996.
    [54] D. Taubman, “EBCOT: Embedded Block Coding with Optimized Truncation,” ISO/IEC JTC1/SC29/WG1 N1020R, Oct. 1998.
    [55] D. Taubman, “High Performance Scalable Image Compression with EBCOT,” IEEE Trans. Image Processing, vol.9, no.7, pp. 1158-1170, July 2000.
    [56] D. Taubman, E. Ordentlich and M. Weinberger, “Embedded block coding in JPEG2000,” Proc. of IEEE International conference on image processing, vol.2, pp. 33-36, Sep. 2000.
    [57] M. Vishwanath, R. M. Owens and M. J. Irwin, “VLSI architectures for the discrete wavelet transform,” IEEE Trans. Circuits and Systems, vol. 42, no. 5, pp. 305-316, 1995.
    [58] M. Vishwanath and R. M. Owens, “A Common Architecture for the DWT and IDWT,” Proceedings of International Conference on Application Specific Systems, Architectures and Processors, pp. 193–198. 1996.
    [59] K-M. Yang, M.-T. Sun and L. Wu, “A family of VLSI designs for the motion compensation block-matching algorithm,” IEEE Trans. Circuits and Systems, vol. 36, no. 10, pp. 1317-1325, 1989.
    [60] ISO/IEC JTC1/SC29/WG1 FCD15444-1 JPEG 2000 Part I Final Committee Draft Version 1.0, “Information Technology JPEG 2000 Image Coding System,” March 1999.
    [61] CD ISO/IEC JTC1/SC29/WG11 N2202 “Information Technology Coding of Audio-Visual Objects: Visual,” March 1998.

    下載圖示 校內:2005-10-11公開
    校外:2005-10-11公開
    QR CODE