簡易檢索 / 詳目顯示

研究生: 張乃文
Chang, Nai-Wen
論文名稱: 在有錯點和錯邊的莫氏立方體上的泛圓性
Pancyclicity on the Möbius Cube with Both Faulty Nodes and Faulty Edges
指導教授: 謝孫源
Hsieh, Sun-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 31
中文關鍵詞: 圖形理論連結網路莫氏立方體容錯嵌入
外文關鍵詞: Hamiltonian, pancyclicity, fault-tolerant embedding, Möbius cubes, Graph-theoretic interconnection networks
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   容錯性一直是連結網路中的一個重要的課題,其內容主要是討論在圖(graph) 中,若是點與邊發生錯誤,當網路失去連通性的情況下,一些主要圖形性質的相關研究。如果一個圖包含所有長度從4到 的圓圈(cycle),那麼我們說這一個圖具有全圓性的特性(pancyclic)。令 和 分別代表在圖中錯點和錯邊的集合。在本篇論文中,我們證明了在 維度的莫氏立方體(Möbius cube)中,即使最多有 個錯誤(共包含錯點和錯邊)的情況下,莫氏立方體仍然保有全圓性的特性。

     A graph G = (V,E) is said to be pancyclic if it contains fault-free cycles of all lengths
    from 4 to |V| in G. Let Fv and Fe be the sets of faulty nodes and faulty edges of an
    n-dimensional Möbius cube MQn, respectively, and let F = Fv U Fe. In this paper, we
    show that MQn−F contains a fault-free Hamiltonian path when |F|<= n−1 and n>=1.
    We also show that MQn−F is pancyclic when |F| n−2 and n>=2. Since MQn is
    regular of degree n, both results are optimal in the worst case.

    Contents                          1 List of Figures                       2 Abstract                          3 1 Introduction                       4 2 Preliminaries                       6 3 A fault-free Hamiltonian path              10 4 Fault-tolerant pancyclicity on Möbius cubes       17  4.1 Critical cycles                   17  4.2 (N-2)-fault-tolerant pancyclicity          18 5 Concluding remarks                    28

    [1] J. C. Bermond, Ed., “Interconnection Networks,” a special issue of Discrete Applied Mathematics, vol. 37+38, 1992.

    [2] J. Bruck, R. Cypher, and C. T. Ho, “Fault-tolerant meshes and hypercubes with minimal numbers of spares,” IEEE Transaction on Computers, vol. 42, no. 9, pp. 1089–1104, 1993.

    [3] J. Bruck, R. Cypher, and C. T. Ho, “Fault-tolerant de Bruijn and shuffle-exchange networks,” IEEE Transaction on Parallel and Distributed Systems, vol. 5, no. 5, pp. 548–553, 1994.

    [4] J. Bruck, R. Cypher, and C. T. Ho, “On the construction of fault-tolerant cubeconnected cycles networks,” Journal of Parallel and Distributed Computing, vol. 25, issue 1, pp. 98–106, 1995.

    [5] J. Bruck, R. Cypher, and C. T. Ho, “Wildcard dimensions, coding theory and faulttolerant meshes and hypercubes,” IEEE Transaction on Computers, vol. 44, no. 1, pp. 150–155, 1995.

    [6] M. Y. Chan, F. Y. L. Chin, and C. K. Poon, “Optimal simulation of full binary trees on faulty hypercubes,” IEEE Transaction on Parallel and Distributed Systems, vol. 6, no. 3, pp. 269–286, 1995.

    [7] P. Cull, and S. M. Larson, “The M¨obius cubes,” in Proceedings of the sixth Distrib. Memory Computing Conference, vol. 44, pp. 699–702, 1991.

    [8] K. Diks and A. Pele, “Efficient gossiping by packets in networks with random faults,”SIAM Journal on Discrete Mathematics, vol. 9, no. 1, pp. 7–18, 1996.

    [9] A. H. Esfahanian and S. L. Hakimi, “Fault-tolerant routing in de Bruijn communication networks,” IEEE Transactions on Computers, vol. C-34, no. 9, pp. 777–788, 1985.

    [10] Jianxi Fan, “Diagnosability of th M¨obius Cubes,” IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 9, pp. 923–928, 1998.

    [11] Jianxi Fan, “Hamiltonian-connectivity and cycle-embedding of the M¨obius cubes,”Information Processing Letters, vol. 82, pp. 113–117, 2002.

    [12] Jung-Sheng Fu and Gen-Huey Chen, “Hamiltonicity of the hierarchical cubic network,”Theory of Computing Systems, vol. 35, pp. 59–79, 2002.

    [13] Jung-Sheng Fu, “Fault-tolerant cycle embedding in the hypercube,” Parallel Computing, vol. 29, pp. 821-832, 2003.

    [14] F. Harary, Graph Theory, Addison-wesley, Massachusetts, 1972.

    [15] S. Y. Hsieh and C. H. Chen, “Pancyclicity on M¨obius cubes with maximal edge faults,” Parallel Computing, vol. 30, pp. 407–421, 2004.

    [16] D. F. Hsu, “Interconnection Networks and Algorithms,” a special issue of Networks, vol. 23, no. 4, 1993.

    [17] W. Huang, Y. Chuang, J. J. M. Tan, L. Hsu, “Fault-free Hamiltonian cycles in faulty M¨obius cubes,” Computaci´on y Systemas, vol. 4, no. 2, pp. 106–114, 2000.

    [18] W. T. Huang, W. K. Chen, and C. H. Chen, “Pancyclicity of M¨obius cubes”, in Proceedings of the 9th International Conference on Parallel and Distributed Systems (ICPADS’02), pp. 591–596, 2002.

    [19] A. Kanevsky and C. Feng, “On the embedding of cycles in pancake graphs,” Parallel Computing, vol. 21, pp. 923–936, 1995.

    [20] H. C. Keh and J. C. Lin, “On fault-tolerant embedding of Hamiltonian cycles, linear arrays and rings in a flexible hypercube,” Parallel Computing, vol. 26, pp. 769–781, 2000.

    [21] H. K. Ku and J. P. Hayes, “Optimally edge fault-tolerant trees,” Networks, vol. 27, no. 3, pp. 203–214, 1996.

    [22] S. Latifi and N. Bagherzadeh, “Hamiltonicity of the clustered-star graph with embedding applications,” in Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, 1996, pp. 734–744.

    [23] A. C. Liang, S. Bhattacharya, andW. T. Tsai, “Fault-tolerant multicasting on hypercubes,” Journal of Parallel and Distributed Computing, vol. 23, issue 3, pp. 418–428, 1994.

    [24] R. S. Lo and G. H. Chen, “Embedding longest fault-free paths in arrangement graphs with faulty vertices,” Networks, vol. 37, no. 2, pp. 84–93, 2001.

    [25] Y. Rouskov, S. Latifi, and P. K. Srimani, “Conditional fault diameter of star graph networks,” Journal of Parallel and Distributed Computing, vol. 33, issue 1, pp. 91–97, 1996.

    [26] R. A. Rowley and B. Bose, “Distributed ring embedding in faulty De Bruijn networks,” IEEE Transaction on Computers, vol. 46, no. 2, pp. 187–190, 1997.

    [27] H. Sarbazi-Azad, M. Ould-Khaoua, and L. M. Mackenzie, “Algorithmic construction of Hamiltonian in pyramids,” Information Processing Letters, vol. 80, no. 2, pp. 75–79, 2001.

    [28] Y. C. Tseng, “Embedding a ring in a hypercube with both faulty links and faulty nodes,” Information Processing Letters, vol. 59, no. 4, pp. 217–222, 1996.

    [29] Y. C. Tseng, S. H. Chang, and J. P. Sheu, “Fault-tolerant ring embedding in star graphs with both link and node failures,” IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 12, pp. 1185–1195, 1997.

    [30] G. Tel, Topics in distributed algorithms, Cambridge Int’l Series on Parallel Computation, Cambridge University Press, 1991.

    [31] M. D.Wagh and J. Mo, “Hamiltonian cycles in trivalent Cayley graphs,” Information Processing Letters, vol. 60, no. 4, pp. 177–181, 1996.

    [32] P. J. Yang, S. B. Tien, and C. S. Raghavendra, “Embedding of rings and meshes onto faulty hypercubes using free dimensions,” IEEE Transaction on Computers, vol. C-43, no. 5, pp. 608–613, 1994.

    下載圖示 校內:立即公開
    校外:2005-06-02公開
    QR CODE