簡易檢索 / 詳目顯示

研究生: 陳毓霖
Chen, Yu-Lin
論文名稱: 雙模式無電流偵測器數位降壓型控制器
Dual Mode Digital Buck Converter Controller without Current Sensor
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 59
中文關鍵詞: 脈波頻率調變脈波寬度調變數位控制降壓轉換器
外文關鍵詞: Pulse frequency modulation, Pulse width modulation, Digital control buck converter
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前常見的降壓型控制器,為了能夠得到較高的效率,通常會在重載時採用脈波寬度調變模式,輕載時採用脈波頻率調變模式,而此方法需要使用電流感測器判斷電感電流是否為零,才能使轉換器的控制方式根據負載的不同,自動轉換脈波寬度調變模式和脈波頻率調變模式。
    本篇論文採用無電流感測之技術,不需要電流感測器偵測電感電流,即可達到自動轉換模式之功能。優化此判斷兩種模式轉換的演算法,使電路面積與功耗減少,本文之控制器將切換頻率提高,以降低穩態下之輸出電壓漣波,並加入短路保護機制,當短路故障發生時會自動將開關關閉,避免短路故障而使元件損壞。
    使用FPGA(DE2-70)驗證功能且實作降壓型轉換器,輸入電壓為 3~4.2 V,輸出電壓為1.2 V,最高效率為86 % @Io=0.5 A,並且使用TSMC 1P6M 0.18 μm Cell-Based 製程下線。

    The common buck converter is used the pulse width modulation (PWM) mode under the heavy load and the pulse frequency modulation (PFM) mode under the light load to obtain the high efficiency. The control method, switching the PWM mode and the PFM mode automatically depend on the different loads, needs the current sensor to judge whether the inductor current is zero or not.
    The thesis uses the no current sensing technology which switches the two modes automatically without the current sensor. In addition, optimize the algorithm to make the area and cost of the control circuit less than before and increase the switching frequency of the converter to obtain the less output voltage ripple. Further, add the short circuit protection function which turns off the switches when the short circuit fault occurs to prevent damaging the components.
    Use the field programmable gate array (FPGA) to verify the functions and implement a buck converter which has 3~4.2 V input voltage, 1.2 V output voltage and 86% highest efficiency under 0.5 A output current. After the FPGA verification, the control circuit has been implemented in TSMC 1P6M 0.18 μm CMOS technology.

    Chinese Abstract I Abstract II Acknowledgement IV Chapter 1 Introduction 1 1.1 Backgrounds and Motivations 1 1.1.1 Cellphones and Li-ion Batteries 1 1.1.2 Digital Power IC Development 3 1.2 Related Research and Development 3 1.3 Organization of Thesis 6 Chapter 2 Introduction of Dual Mode Buck Converter Controller without Current Sensor 8 2.1 PWM Mode in Buck Converter 8 2.2 PFM Mode in Buck Converter 10 2.3 Dual Mode in Buck Converter 11 2.3.1 PWM Mode to PFM Mode 12 2.3.2 PFM Mode to PWM Mode 14 Chapter 3 Introduction of Digital Buck Converter System 16 3.1 Convention Buck Converter 16 3.1.1 Continuous Conduction Mode in Buck Converter Analysis 17 3.1.2 Discontinuous Conduction Mode in Buck Converter Analysis 22 3.2 Digital Buck Converter System 26 3.2.1 Analog to Digital Converter 27 3.2.2 Digital PID Compensator 28 3.2.3 Digital Pulse Width Modulation (DPWM) 29 3.2.4 Digital Pulse Frequency Modulation (DPFM) 30 3.2.5 PWM/PFM controller 31 Chapter 4 Implementation of Digital Dual Mode Buck Converter System 34 4.1 Digital Dual Mode Buck Converter System 34 4.1.1 System Overview 34 4.1.2 Power Stage 35 4.1.3 FPGA Environment 38 4.2 IC implemantation 39 4.2.1 IC Simulation Results 39 4.2.2 IC Specification 41 4.2.3 IC Wire Bonding Diagram 42 Chapter 5 Experimental Results 43 5.1 Matlab/Simulink and Modelsim Simulation 43 5.2 Implementation in FPGA 44 5.2.1 Steady State in PWM Mode 44 5.2.2 Steady state in PFM mode 47 5.2.3 Transient State from PWM Mode to PFM Mode 48 5.2.4 Transient State from PFM Mode to PWM Mode 50 5.2.5 Protection Function 52 5.2.6 Efficiency Chart 53 Chapter 6 Conclusions and Future Works 54 6.1 Conclusions 54 6.2 Future Works 55 Rererences 56

    [1] V. Sangwan, A. Sharma, R. Kumar and A. K. Rathore, “Equivalent circuit model parameters estimation of Li-ion battery: C-rate, SOC and temperature effects,” IEEE International Conference on Power Electronics, Drives and Energy Systems, pp.1–6, 2016.
    [2] W. Yan, B. Zhang, W. Dou, D. Liu and Y. Peng, “Low-Cost Adaptive Lebesgue Sampling Particle Filtering Approach for Real-Time Li-Ion Battery Diagnosis and Prognosis,” IEEE Transactions on Automation Science and Engineering, pp. 1-11, 2017.
    [3] W. H. Chang and L. P. Tai, “Design of a digital power IC,” Proceedings of 2010 International Symposium on VLSI Design, Automation and Test, pp.41–44, 2010.
    [4] N. P. Aryan, N. Heidmann, M. Wirnshofer, N. Hellwege, J. Pistor, D. P. Drolshagen, G. Georgakos, S. Paul and D. S. Landsiedel, “Power efficient digital IC design for a medical application with high reliability requirements,” 24th International Workshop on Power and Timing Modeling, Optimization and Simulation, pp.1–5, 2014.
    [5] M. Lai, J. L. Drewniak, V. Ricchiuti, A. Orlandi and G. Antonini,“ Modeling of the IC's switching currents on the power bus of a high speed digital board,” IEEE Workship on Signal Propagation on Interconnects, pp.51–54, 2006.
    [6] N. Das and M. K. Kazimierczuk, “Power losses and efficiency of buck PWM DC-DC power converter,” Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, pp.417–423, 2005.
    [7] M. K. Kazimierczuk, A. J. Edstrom and A. Reatti, “Buck PWM DC-DC converter with reference-voltage-modulation feedforward control,” IEEE International Symposium on Circuits and Systems, pp.537–540, 2001.
    [8] T. H. Lee, J. G. Kim, K. S. Yoon, “A CMOS buck converter with PFM / hysteretic mode,” International SoC Conference, pp.347–348, 2016.
    [9] Y. C. Hung, B. S. Lian, “Integration of High Efficiency PFM-Based Buck Converter for LEDs Driving,” International Symposium on Computer, Consumer and Control pp.804–807, 2014.
    [10] C. Tao and A. A. Fayed, “A Low-Noise PFM-Controlled Buck Converter for Low-Power Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers., vol. 59, pp. 3071-3080, 2012.
    [11] A. Morra, M. Piselli and A. Gola, “PFM mode buck converter: A mathematical model to calculate the maximum switching frequency,” 15th IEEE International Conference on Electronics, Circuits and Systems, pp.926-929, 2008.
    [12] A. Morra, M. Piselli, M. Flaibani and A. Gola, “A buck converter operating in PFM mode, mathematical model and simulation analysis,” INTELEC 07 - 29th International Telecommunications Energy Conference, pp.23-26, 2007.
    [13] Allegro MicroSystems, “Wide Input Voltage, 2 A Buck Regulator Family with Low IQ Mode,” Allegro A8585, 2016.
    [online]
    http://www.allegromicro.com/en/Products/Regulators-And-Lighting/Single-Output-Regulators/A8585.aspx
    [14] Richtek Technology Corporation, “12V Green Voltage Mode High Efficiency Synchronous Buck PWM Controller,” Richtek RT8130A, 2015.
    [online]
    http://www.richtek.com/assets/product_file/RT8130A/DS8130A-00.pdf
    [15] Fairchild, “Buck Converter with Bypass Mode for GSM/EDGE PAMs, 3G/3.5G and 4G Pas,” Fairchild FAN5904, 2016.
    [online]
    https://www.fairchildsemi.com/products/power-management/non-isolated-dc-dc/step-down-regulators-synchronous-int/FAN5904.html
    [16] S. Xiao, W. Qiu, G. Miller, T. X. Wu and I. Batarseh, "An Active Compensator Scheme for Dynamic Voltage Scaling of Voltage," IEEE Trans. Power Electronics, vol. 24, pp. 307-311, 2009.
    [17] S. Feng, W. H. Ki, C. Y. Tsui, "Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications," IEEE Journal Solid-State Circuits, vol. 43, pp. 815-822, 2008.
    [18] Texas Instruments,”Understanding Buck Power Stage in Switching Mode Power Supply,” Texas Instruments Application Report, 2014.
    [online]
    http://www.ti.com/lit/an/slva057/slva057.pdf
    [19] C. Moises, V. Tanca, I. Barbi, “A high step-up gain DC-DC converter based on the stacking of three conventional buck boost DC-DC converters,” XI Brazilian Power Electronics Conference, pp. 196-200, 2011.
    [20] S. Y. Kim, Y. J. Park, I. Ali, T. T. K. Nga, H. C. Ryu, Z. H. N. Khan, S. M. Park, Y. G. Pu, M. Lee, K. C. Hwang, Y. Yang and K. Y. Lee, “A Design of a High Efficiency DC-DC Buck Converter With Two-Step Digital PWM and Low Power Self Tracking Zero Current Detector for IoT Applications,” IEEE Transactions on Power Electronics, pp. 1-1, 2017.
    [21] X. Zhao, C. Chang, Y. Li and Z. Zhou, “Analysis of nonlinear phenomena in digital integral-controlled Buck converters,” IEEE Region 10 Conference, pp. 65-69, 2016.
    [22] S. L. Chen, J. F. Villaverde, H. Y. Lee, D. W. Y. Chung, T. L. Lin, C. H. Tseng and K. A. Lo, “A Power-Efficient Mixed-Signal Smart ADC Design With Adaptive Resolution and Variable Sampling Rate for Low-Power Applications,” IEEE Sensors Journal, vol. 17, pp. 3461-3469, 2017.
    [23] T. Y. Lee, T. Butcher, T. Ishida, A. Panigada and D. Meacham, “Digitally enhanced high speed ADC for low power wireless applications,” IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, pp. 64-67, 2017.
    [24] L. Lin, J. Qiu and L. He, “Compensator design for digital controlled switched-mode power supplies,” 9th IEEE International Conference on ASIC, pp. 982-985, 2011.
    [25] C. H. Yang, C. N. Liu and C. H. Tsai, “Direct digital compensator design for switching converters,” International Symposium on Next Generation Electronics, pp. 143-146, 2010.
    [26] W. C. Chen, C. C. Chen, C. Y. Yao and R. J. Yang, “A Fast-Transient Wide-Voltage-Range Digital-Controlled Buck Converter With Cycle-Controlled DPWM,” IEEE Transactions on Very Large Scale Integration Systems, vol. 24, pp. 17-25, 2016.
    [27] J. H. Park and K. B. Lee, “Improved DPWM scheme for improvement of grid current quality in a large-scale grid-connected inverter system with a LCL-filter,” IEEE Conference on Energy Conversion, pp. 343-348, 2015.
    [28] S. Kapat, “Reconfigurable Periodic Bifrequency DPWM With Custom Harmonic Reduction in DC–DC Converters,” IEEE Transactions on Power Electronics, vol. 31, pp. 3380-3388, 2016.
    [29] V. Radhika and K. Baskaran, “FPGA based DPWM/DPFM architecture for digitally controlled dc-dc converters,” IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering, vol. 31, pp. 78-82, 2016.
    [30] Y. Murakami, T. Sato and K. Nishijima, “PFM controller with phase lead characteristics using hysteretic comparator for LLC converter,” 3rd Conference on Power Engineering and Renewable Energy, pp. 13-18, 2016.
    [31] X. Gao, H. Wu, Y. Xing, H. Hu and Y. Zhang, “A new tightly regulated dual output LLC resonant converter with PFM plus secondary side phase-shift control,” IEEE Energy Conversion Congress and Exposition, pp. 1-6, 2016.
    [32] Y. Qian, D. Lv, Q. Li and Z. Hong, “A 2 MHz buck converter with dual-mode control for Power Management Unit, ”12th IEEE International Conference on Solid-State and Integrated Circuit Technology, pp. 1-3, 2016.
    [33] Z. Bi and W. Xia, “A PWM/PFM switch technique of dual-mode buck converter,” IET International Communication Conference on Wireless Mobile and Computing, pp. 357-360, 2009.
    [34] J. A. Hora, J. C. Zeng and W. R. Liou, “Asynchronous dual-mode buck converter design with protection circuits in 0.13µm CMOS process for battery applications,” IEEE 8th International Conference on ASIC, pp. 1314-1317, 2009.
    [35] W. R. Liou, M. L. Yeh and Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC For Portable Applications,” IEEE Transactions on Power Electronics, vol. 23, pp. 667-677, 2008.

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE