| 研究生: |
黎建成 Li, Chien-Cheng |
|---|---|
| 論文名稱: |
具奈米孔的非蒸發型鈦及鈦鋯釩合金氣體吸附膜之製備與特性研究 Fabrication and characterization of non-evaporable nanostructured porous Ti and Ti-Zr-V film getters |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 非蒸發型氣體吸收膜 、鈦鋯釩膜 、比表面積 、多孔膜 、活化 、同步輻射X光光電子能譜儀 、鈦膜 |
| 外文關鍵詞: | Ti, TiZrV, Getter, NEG, BET, Porous films, Activation, Glancing angle, SRPES |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來微小化真空元件結合薄膜化之氣體吸附膜需求快速增加,亦即晶片式構裝或微機電系統元件是技術發展趨勢,不僅是降低生產成本的重要關鍵,如何有效提升氣體吸附膜的氣體吸附性能、發展高吸附容量的結構及降低活化溫度的研究也是非常重要的目標。因此本研究嘗試製作多孔薄膜式非蒸發型氣體吸收膜,因高多孔性氣體吸收膜具有較大比表面積,可加速晶片之間微小間距的抽氣功能,以提高真空度與穩定氣壓,並朝降低氣體吸附膜活化溫度的目標來進行,以達到製作高氣體吸附能力及活化溫度低於250℃的多孔性氣體吸附膜,並探討合金元素對活化溫度影響的機制。
實驗以直流磁控濺鍍法,藉由探討鍍膜參數(濺鍍氣體氬氣壓力、dc功率及濺射角度)對整體鍍層之成份、微結構、氣體吸附性能和活化性質的影響,以期能製作高多孔性的鈦及鈦鋯釩薄膜,提升氣體吸附的能力,實驗結果顯示藉由控制鍍膜製程的濺鍍氣體氬氣壓力及高濺射角度條件下,可成功製作高多孔性鈦及鈦鋯釩合金氣體吸附膜於矽基材(100)上,薄膜微結構呈現高孔隙度之奈米柱狀結構,且多孔薄膜的比表面積隨濺鍍角度增加有明顯增加的趨勢。結果亦顯示多孔性鈦膜及鈦鋯釩膜的微結構形成,主要受到濺鍍流率、原子表面擴散速率、成核速率、幾何遮蔽效應及薄膜成分影響。由熱重分析結果顯示氧氣吸附的重量變化,主要和鈦及鈦鋯釩氣體吸附膜的比表面積、表面的微結構、氧元素在膜內的擴散速率、氧化鈦、氧化鋯和氧化釩之穩定性及鈦、鋯和釩的氧結合力有關;多孔鈦膜氧氣吸附的能力高於多孔性鈦鋯釩膜,主要是因多孔鈦膜具有較高的比表面積、柱狀表面粗糙度及氧的溶解度限。
實驗使用具有高能量及高解析的同步輻射X光光電子能譜儀分析鈦膜及鈦鋯釩膜的活化過程,結果發現多孔鈦膜及多孔鈦鋯釩膜分別經過250℃及160℃的熱活化過程後,表面金屬氧化態大部分被還原成金屬態,亦即本研究製作的多孔鈦膜及多孔鈦鋯釩膜活化溫度可低於250℃,表示多孔鈦膜及多孔鈦鋯釩膜很適合作為晶片式真空封裝的氣體吸收劑。在鈦中加入了合金元素鋯及釩元素,其中鋯元素在活化的過程,鋯取代氧化鈦及氧化釩的反應發生,因此降低了氧化鈦及氧化釩的活化溫度,而鋯及釩元素的加入使得鈦鋯釩膜維持非晶鬆散結構,除可增加氣體雜質的溶解度,亦有利於被吸附原子或分子的擴散,由此顯示鈦鋯釩合金膜很適合作為160℃以下之晶片式真空封裝的氣體吸收劑。另外,當多孔鈦膜在加熱溫度範圍200℃至350℃,表面C–C鍵吸附物轉變成TiC相,然而,C–C鍵吸附物於多孔鈦鋯釩膜表面上,可於加熱溫度為250℃或以上條件下完全被去除。
比較非多孔鈦鋯釩膜及多孔鈦鋯釩膜的微結構、成分、比表面積與活化溫度,結果顯示非多孔鈦鋯釩膜呈現緻密的薄膜結構,然而多孔鈦鋯釩膜呈現明顯分離柱狀的多孔結構,兩種薄膜的成分及厚度相近,比表面積分別為2 m2/g和13 m2/g。結果顯示非多孔鈦鋯釩膜的活化程度稍高於多孔鈦鋯釩膜,主要和薄膜的比表面積、微結構及初成長膜表面的成分有關,為了要達到完全活化鈦鋯釩膜,活化的溫度及時間需高於350℃及大於30分鐘。實驗亦探討活化的非多孔鈦鋯釩膜及多孔鈦鋯釩膜之氧氣吸附能力,結果顯示活化的鈦鋯釩膜在室溫時具有氧氣吸附的能力,然而,非多孔鈦鋯釩膜及多孔鈦鋯釩膜表面之鈦、鋯及釩三種元素的氧化程度明顯不同,主要和這三個元素的氧結合力有關,鈦、鋯及釩元素的氧化程度為鋯>鈦>釩,造成活化之鈦鋯釩膜表面以金屬鋯的氧化程度最高,鈦元素大部分被氧化,但仍殘留了少部分的金屬鈦,而釩元素仍保有大部分的金屬釩,這表示鋯元素較鈦及釩元素更易於形成氧化物。
最後對於實際的運用,氣體吸附膜需要具有高的氧溶解度限、高的反應比表面積、可快速達到活化及壽命長等特點,並可使用於多次活化/曝氣循環的使用,實驗以多孔鈦鋯釩膜進行曝空氣/活化循環測試,結果發現表面的氧化態與組成成分受到每一次曝空氣及活化處理的影響,表面的碳類吸附物隨著曝空氣/活化循環次數的增加有累積的現象。經過曝空氣處理,表面的氧成分隨著曝空氣/活化循環次數的增加而降低,而表面的鋯元素隨著曝空氣/活化循環次數的增加有累積的現象,主要是因為活化過程鋯取代氧化鈦及氧化釩的反應發生及表面有碳化物的形成。由此可知降低多孔鈦鋯釩膜活化程度的因素為表面上碳化物的累積現象,因此為了維持多孔鈦鋯釩膜有較佳的活化程度,活化的溫度及時間需高於250℃及大於30分鐘。
According to the progress of microelectromechanical system (MEMS) technologies, the developments of the minimizing vacuum devices have largely increased for the past few years. The features of these devices are the wafer-level bonding fabrications and small vacuum cavity with several micro-gap. The development of the high pumping capacity, porous structure, and low activation temperature of the NEG are the main purpose in the minimizing vacuum devices. This is a key technique to decrease the production costs of bonding fabrications. In this study, the non-evaporable porous thin-film-type getters will be produced by magnetron sputtering. The NEG with high porosity and grain boundaries show a markedly high pumping speed to the gases for improving the capability to absorb the residual gases inside these sealed-off devices. In order to investigate the alloying effect on the activation temperature of the NEG, the research will be studied activation temperature of the NEG, which exhibited activation temperature below 250℃.
Highly porous Ti and TiZrV getter film coatings have been successfully grown on (100) silicon substrates using the glancing angle dc magnetron sputtering method. The main deposition parameters that produce the porous Ti and the TiZrV films are the pressure of sputtering gas Ar and glancing angle at room temperature. The evolution of the microstructures of the Ti and the TiZrV films strongly depends on the sputtering flux rate, surface diffusion rate, nucleation rate, compositions, and self-shadowing geometry of the nuclei on the sputtering flux. The larger the glancing angle, the higher the porosity and specific surface area of the Ti and TiZrV films.
The weight-gain results strongly depend on several factors, such as specific surface area, the surface structure of the getter film, the diffusion rate of O in the getter film, the reactivity of Ti, Zr, and V on O, and the order of the stabilities of Ti, Zr, and V oxides on the film’s surface. Porous Ti film absorbs oxygen better than porous TiZrV film does due to the its higher surface area and the high diffusion rate of O in Ti films.
Highly porous Ti and TiZrV film getters on (100) silicon substrates were used to study the effects of alloy elements on activation process. The effect of activation temperature on the reducing degree of the porous Ti and TiZrV films were investigated by synchrotron radiation photoemission spectroscopy (SRPES). The carbon-element absorbed on the surface of the Ti film, exposed in air, will be transformed to a Ti carbide phase, however, that which is on the surface of the TiZrV film will be completely removed by a heating treatment at 250℃ or above. The oxidized Ti in porous TiZrV film is more easily reduced than that in the porous Ti films. The breakdown of V-O and Ti-O bonds on the TiZrV film surface is easier than that of the Zr-O bond. We suggest that the decrease of reducing temperature of oxidized TiZrV, comparing with that of oxidized Ti, is caused by the displacing reaction of Zr on oxidized Ti or oxidized V.
The effects of activation temperature on the reducing degree of the dense and porous TiZrV films were investigated by synchrotron radiation photoemission spectroscopy. The dense and porous TiZrV films have similar composition and thickness, and their specific surface areas are 2 m2/g and 13 m2/g, respectively. Comparing the previous results of the porous TiZrV film, the activation degree of the porous TiZrV film is lower than that of the dense TiZrV film. To complete the activation treatment of the dense and porous TiZrV films, the activation temperature must be higher than 350℃ or the activation time must be longer than 30 minutes.
TiZrV films, grown at the deposition angles of 0 and 70, were used for the study of the oxygen-adsorption process. When the deposition angle is 0, the appearance of the film is dense columnar structure. However, the film grown at the glancing angle of 70 is composed of porous and isolated columns, which are made of fine clusters. The activated TiZrV films have the capability to absorb oxygen at room temperature. The component Zr is more easily oxidized than Ti and V components when the TiZrV film is exposed in oxygen. The content of oxidized Ti and oxidized V does not linearly increase with the increase of oxygen exposure when there is a metallic Zr component on the surface of the film.
Highly porous TiZrV films on (100) Si wafers were used to study the oxidation state of a film surface after three gas-adsorption/activation cycles using synchrotron radiation photoemission spectroscopy. The oxidation state and composition of porous TiZrV film are highly affected by the present conditions of air-exposure/activation cycles. In the porous TiZrV films after activation treatment, the C content on the surface of the films gradually increased with increasing air-exposure/activation cycles. In the porous TiZrV film after air-exposure treatment, the O content on the surface of the films decreased with increasing of air-exposure/activation cycles. The concentration of Zr on the film surface became rich with increasing of air-exposure/activation cycles. These results are caused by the formation of metal carbides on the film surface.
1.C. Benvenuti, J. M. Cazeneuve, P. Chiggiato, F. Cicoira, A. Escudeiro Santana, V. Johanek, V. Ruzinov, J. Fraxedas: A novel route to extreme vacua: the non-evaporable getter thin film coatings. Vacuum 53, 219-225 (1999).
2.C. Benvenuti, P. Chiggiato, F. Cicoira, Y. L. Aminot, V. Ruzinov: Vacuum properties of palladium thin film coatings. Vacuum 73, 139-144 (2004).
3.P. Chiggiato, P. costa Pinto: Ti-Zr-V non-evaporable getter films: From development to large scale production for the Large Hadron Collider. Thin Solid Films 515, 383-388 (2006).
4.B. Ferrario, A. Figini, and M. Borghi: A new generation of porous non-evaporable getters. Vacuum 35(1), 13-17 (1985).
5.T. A. Giorgi, B. Ferrario, and B. Storey: An updated review of getter and gettering. J. Vac. Sci. Technol. A 3(2), 471-423 (1985).
6.J. M. Lafferty: Foundations of Vacuum Science and Technology. John Wiley & Sons, Inc., New York, pp. 259-374 (1998).
7.F. Surara, N. Tsud, K. Veltruska, V. Matolin: XPS and ESD study of carbon and oxygen chemistry on TiZrV NEG. Vacuum 61, 135-139 (2001).
8.C. Benvenuti, P. Chiggiato, F. Cicoira and V. Ruzinov: Decreasing surface outgasing by thin film getter. Vacuum 50, 57-63 (1998).
9.P. Chiggiato, R. Kersevan: Synchrotron radiation-induced desorption from a NEG-coated vacuum chamber. Vacuum 60, 67-72 (2001).
10.C. Benvenuti, P. Chiggiato, F. Cicoira, and Y. L’Aminot: Nonevaporable getter films for ultrahigh vacuum applications. J. Vac. Sci. Technol. A 16, 148-154 (1998).
11.C. Benvenuti, G. Canil, P. Chiggiato, P. Collin, R. Cosso, J. Guerin, S. Ilie, D. Latorre, K. S. Neil: Surface cleaning efficiency measurements for UHV applications. Vacuum 53 317-320 (1999).
12.M. Audi, L. Doicino, F. Doni, and B. Ferrario: A new ultrahigh vacuum combination pump. J. Vac. Sci. Technol. A 5(4), 2587-2590 (1987).
13.C. Benvenuti, A. Escudeiro Santana, V. Ruzino: Ultimate pressures achieved in TiZrV sputter-coated vacuum chambers. Vacuum 60, 279-284 (2001).
14.F. Doni, C. Boffito, and B. Ferrario: Hydrogen isotope sorption and recovery by a nonevaporable getter combined with a chemical compressor material. J. Vac. Sci. Technol. A 4(6), 2447-2451 (1986).
15.C. Boffito, B. Ferrario, L. Rosai, and F. Doni: Gettering in cryogenic applications. J. Vac. Sci. Technol. A 5(6), 3442-3445 (1987).
16.M. Miki, K. Itoh, N. Enomoto, H. Ishimaru: Characteristics of extremely fast pump-down process in an aluminum ultrahigh vacuum system. J. Vac. Sci. Technol. A 12(4), 1760-1766 (1994).
17.R. Giannantonio, M. Succi, and C. Solcia: Combination of a cryopump and a non-evaporable getter pump in applications. J. Vac. Sci. Technol. A 15(1), 187-191 (1997).
18.Roberto Giannantonio, Magda Bovisio, Andrea Conte: Combination of a getter pump with turbomolecular pumps in UHV applications. Vacuum 55, 27-37 (1999).
19.Roberto Giannantonio, Paolo Manini, Francesco Mazza, Danilo Dominoni, Alberto Clozza, Lucio Zanin: Design and characterization of high capacity nonevaporable getter pumps embedded inside the interaction regions of DAΦNE. J. Vac. Sci. Technol. A 17(4), 2093-2098 (1999).
20.R. M. Caloi and C. Carretti: Getters and gettering in plasma display panels. J. Vac. Sci. Technol. A 16(3), 1991-1997 (1998).
21.Daniel den Engelsen and Bruno Ferraio: Gettering by Ba films in color cathode ray tubes. J. Vac. Sci. Technol. B 22(2), 809-817 (2004).
22.Antonio Bonucci, Roberto Giannantonio, Corrado Carretti, Giorgo Longoni, Anna Lisa Caterino, and Marco Urbano: Pumping characteristics of metal films in a vacuum glass vessel: Experimental and theoretical issues. J. Vac. Sci. Technol. A 22(4), 1820-1827 (2004).
23.R. M. Caloi and C. Carretti: Getters and gettering in plasma display panels. J. Vac. Sci. Technol. A 16(3), 1991-1997 (1998).
24.H. C. Hseuh and C. Lanni: Evaluation of Zr-V-Fe getter pump for UHV system. J. Vac. Sci. Technol. A 1(2) 1283-1287 (1983).
25.S. Amorosi, M. Anderle, C. Benvenuti, S. Calatroni, J. Carver, P. Chiggiato, H. Neupert, W. Vollenberg: Study of the discharge gas trapping during thin-film growth. Vacuum 60 89-94 (2001).
26.Douglas Sparks, Jacob Trevino, Sonbol Massoud-Ansari, and Nader Najafi: An all-glass chip-scale MEMS package with variable cavity pressure. J. Micromech. Microeng, 16, 2488–2489 (2006).
27.D. Sparks, R. Smith, R. Schneider, J. Cripe, S. Massoud-Ansari, A. Chimbayo, and N. Najafi: A variable temperature, resonant density sensor made using an improved chip-level vacuum package. Sensors and Actuators A, 107, 119–124 (2003).
28.Youfeng Jin, Zhenfeng Wang, Lei Zhao, Peck Cheng Lim, Jun Wei, and Chee Khuen Wong: Zr/V/Fe thick film for vacuum packaging of MEMS. J. Micromech. Microeng, 14, 687–692 (2004).
29.Vincenc Nemanic, Marko Zumer, Bojan Zajec, and Talmage Tyler: Getter requirements for a cathode ray tube with a diamond coated field emitter electron source. J. Vac. Sci. Technol. B 20(4), 1379–1383 (2002).
30.Stefano Tominetti and Marco Amiotti: Getters for flat-panel displays. Proceeding of the IEEE 90, 540-558 (2002).
31.P della Porta: Gas problem and gettering in sealed-off vacuum deviices. Vacuum 47, 771-777 (1996).
32.Antonio Bonucci, Roberto Giannantonio, Corrado Carretti, Giorgo Longoni, Anna Lisa Caterino, and Marco Urbano: Pumping characteristics of metal films in a vacuum glass vessel: Experimental and theoretical issues. J. Vac. Sci. Technol. A 22(4), 1820-1827 (2004).
33.B. Ferrario: Chemical pumping in vacuum technology. Vacuum 47, 363-370 (1995).
34.J. Drbohlav, V. Matolin: Static SIMS study of Ti, Zr, V and Ti-Zr-V NEG activation. Vacuum 71, 323-327 (2003).
35.C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Escudeiro Santana, T. Hedley, A. Mongelluzzo, V. Ruzinov, I. Wevers: Vacuum properties of TiZrV non-evaporable getter films. Vacuum 60, 57-65 (2001).
36.C. Benvenuti, P. Chiggiato, A. Mongelluzzo, A. Prodromides, V. Ruzinov, C. Scheuerlein, and M. Taborelli: Influence of the elemental composition and crystal structure on the vacuum properties of Ti-Zr-V nonevaporable getter films. J. Vac. Sci. Technol. A 19 (6), 2925-2930 (2001).
37.C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Prodromides, V. Ruzinov: Influence of the substrate coating temperature on the vacuum properties of Ti-Zr-V non-evaporable getter films. Vacuum 71, 307-315 (2003).
38.V. Matolin, V. Joanek: Static SIMS study of TiZrV NEG activation. Vacuum 67, 177-184 (2002).
39.B. Henrist, N. Hilleret, C. Scheuerlein, M. Taborelli: The secondary electron yield of TiZr and TiZrV non-evaporable getter thin film coatings. Appl. Surf. Sci. 172, 95-102 (2001).
40.C. Scheuerlein and M. Taborelli: Electron stimulated carbon adsorption in ultrahigh vacuum monitored by Auger electron spectroscopy. J. Vac. Sci. Technol. A 20 (1), 93-101 (2002).
41.A. E. Prodromides, C. Scheuerlein, M. Taborelli: Lowering the activation temperature of TiZrV non-evaporable getter films. Vacuum 60, 35-41 (2001).
42.A. E. Prodromides, C. Scheuerlein, M. Taborelli: The characterization of non-evaporable getters by Auger electron spectroscopy: analytical potential and artefacts. Appl. Surf. Sci. 191, 300-312 (2002).
43.J. Zemek, P. Jiricek: XPS and He II photoelectron yield study of the activation process in Ti-Zr NEG films. Vacuum 71, 329-333 (2003).
44.V. Matolin, J. Drbohlav, K. Masek: Mechanism of non-evaporable getter activation XPS and static SIMS study of Zr44V56 alloy. Vacuum 71, 317-322 (2003).
45.Karel Masek, Trantisek Sutara, Tomas Skala, Jiri Drbohlav, Katerina Veltruska and Vladimir Matolin: X-ray photoemission spectroscopy and static secondary ion mass spectroscopy study of activation mechanism of Zr-V low activation temperature nonevaporable getter films. J. Vac. Sci. Technol. A 21(3) 797-805 (2003).
46.F. Sutara, I. Matolinova, T. Skala, K. Masek, V. Matolin: Residual surface oxide on ZrV getter – XPS, LEIS and SIMS study. Vacuum 74, 305-309 (2004).
47.S. Fabik, V. Chab, V. Dudr, K. Masek, K.C. Prince, F. Sutara, K. Veltruska, N. Tsud, M. Vondracek, V. Matolin: Activation of binary Zr-V non-evaporable gettersL a soft X-ray photoemission study of carbide formation, Surf. Sci. 566–568, 1246-1249 (2004).
48.Vladimir Matolin, Karel Masek, Iva Matolinova, Tomas Skala, Katerina Veltruska: XPS and SIMS study of the aging mechanism of Zr-V non-evaporable getter films. Appl. Surf. Sci. 235, 202-206 (2004).
49.V. Matolin, V. Dudr, S. Fabik, V. Chab, K. Masek, I. Matolinova, K. C. Prince, T. Skala, F. Sutara, N. Tsud, K. Veltruska: Activation of binary Zr-V non-evaporable getters: synchrotron radiation photoemission study. Appl. Surf. Sci. 106-112 (2005).
50.V. Joanek, I. Stara, V. Matolin: Role of Pd-Al bimetallic interaction in CO adsorption and catalytic properties of bulk PdAl alloy: XPS, ISS, TDS, and SIMS study. Surf. Sci. 507-510, 92-98 (2002).
51.Iva Matolinova, Viktor Johanek, Tomas Skala, Katerina Veltruska, Vladimir Matolin: XPS, TDS and static SIMS studies of binary Pd/Al system properties: correction between Pd-Al bimetallic interaction and CO adsorption. Appl. Surf. Sci. 245, 87-93 (2005).
52.E. Magnano, S. Vandre, J. Kovac, E. Narducci, R. Caloi, P. Manini: Surface and subsurface properties of a BaLi4 gettering alloy studied using X-ray photoemission spectroscopy. Surf. Sci. 402-404, 223-226 (1998).
53.E. Giorgi, B. Ferrario, and C. Boffito: High-porosity coated getter. J. Vac. Sci. Technol. A 7(2), 218-222 (1989).
54.E. Giorgi, B. Ferrario, and C. Boffito: High-porosity coated getter. J. Vac. Sci. Technol. A 7(2), 218-222 (1989).
55.M. Ohring, The Materials Science of Thin Films, 2nd, (Academic Press, San Diego, USA, 2002), pp.495, 558.
56.J. A. Thornton: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coating. J. Vac. Sci.Technol. 11, 666-670 (1974).
57.H. T. G. Hentzell, C. R. M. Grovenor, and D. A. Smith: Grain structure variation with temperature for evaporated metal films. J. Vac. Sci. Technol., A 2, 218-219 (1984).
58.R. Messier, A. P. Giri, and R. A. Roy: Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 2 (2) 500-503 (1984).
59.J. M. Nieuwenhuizen and H. B. Haanstra: Microfractography of thin films. Philips Tech. Rev. 27, 87-91 (1966).
60.K. Robbie and M. J. Brett: Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
61.K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett: Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. A 13(3), 1032-1035 (1995).
62.P. J. Kelly, J. O’Brien, and R. D. Arnell: The production of porous and chemically reactive coatings by magnetron sputtering. Vacuum 74, 1-10 (2004).
63.J. C. Sit, D. Vick, K. Robbie, and M. J. Brett: Thin film microstructure control using glancing angle deposition by sputtering. J. Mater. Res. 14, 1197-1199 (1999).
64.Leon Abelmann, and Cock Lodder: Oblique evaporation and surface diffusion. Thin Solid Films 305, 1-21 (1997).
65.K. Robbie, C. Shafai, and M. J. Brett: Thin films with manometer-scale pillar microstructure. J. Mater. Res. 14, 3158-3163 (1999).
66.B. Dick, M. J. Brett, and T. Smy: Investigation of substrate rotation at glancing angle incidence on thin-film morphology, J. Vac. Sci. Technol. B 21, 2569-2575 (2003).
67.D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, T. Smy: Self-shadowing and surface diffusion effects in obliquely deposited thin films, Thin Solid Films 339, 88-94 (1999).
68.Paritosh, D. J. Srolovitz: Shadowing effects on the microstructure of obliquely deposited films. J. Appl. Phys. 91, 1963-1972 (2002).
69.D-X Ye, T Karabacak, B K Lim, G-C wang and T-M Lu: Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation. Nanotechnology 15, 817-821 (2004).
70.Motofumi Suzuki and Yasunori Taga: Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys. 90, 5599-5605 (2001).
71.Y.-P. Zhao, D.-X Ye, G.-C. Wang, and T.-M. Lu: Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett. 89, 351-354 (2002).
72.Martin O Jensen and Michael J Brett: Embedded air and solid defects in periodically structured porous thin films. Nanotechnology 16, 2639-2646 (2005).
73.B. Dick, M. J. Brett, T. Smy, M. Belov and M. R. Freeman: Periodic submicrometer structures by sputtering. J. Vac. Sci. Technol. B 19(5), 1813-1819 (2001).
74.J. O’Brien, R. D. Arnell: The production and characterization of chemically reactive porous coatings of zirconium via unbalanced magnetron sputtering. Surf. Coat. Technol. 86-87, 200-206 (1996).
75.D. Vick, M. J. Brett, K. Westra: Porous thin films for the characterization of atomic force microscope tip morphology. Thin Solid Films 408, 79-86 (2002).
76.K. Robbie, C. Shafai and M. J. Brett: Thin films with nanometer-scale pillar microstructure. J. Mater. Res. 14, 3158-3163 (1999).
77.M. Malac, R. F. Egerton, M. J. Brett and B. Dick: Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B 17, 2671-2674 (1999).
78.P. I. Rovira, R. A. Yarussi, R. W. Collins, R. Messier, V. C. Venugopal, A. Lakhtakia, K. Robbie and M. J. Brett: Transmission ellipsometry of a thin-film helicoidal bianisotropic medium. Appl. Phys. Lett. 71(9), 1180-1182 (1997).
79.K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett: Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. A 13(3), 1032-1035 (1995).
80.J. R. Anderson: Structure of metallic catalists. Academic press, New York, 1962.
81.A. Roth, Vacuum technology, 3rd ed. (Elsevier Science Pub., New York, USA, 1990), pp.37, 40.
82.M. A. Lieberman and A. J. Lichtenberg: Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, Inc., New York, USA, pp.522, 524 (1994).
83.Brian Chapman: Glow discharge processes. John Wiley & Sons, Inc., New York, pp. 49-176 (1980).
84.莊達人 編著: VLSI製造技術, 高立圖書有限公司. pp. 146-158 (1995).
85.D. M. Mattox: Deposition technologies for films and coatings. Noyes publications, Park Ridge, New Jersey, USA. (1992).
86.H. H. Anderson and H. L. Bay, in Sputtering by Particle Bombardment I, edited by R. Behrisch (Springer, Berlin, 1981), chapter 4.
87.H. P. Klug, L. E. Alexander: X-ray diffraction procedures. Wiley-Interscience, New York, (1974).
88.S. Lowell, Joan E. Shields, Martin A. Thomas, and Matthias Thommes, Characterization of porous solids and powders: Surface area, pore size and density, (Kluwer Academic Publishers, Dordrecht, The Netherlands), pp.23, 59.
89.Charalambos Papelis, Wooyong Um, Charles E. Russell, Jenny B. Chapman: Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size. Colloids and Surfaces A: Physicochem. Eng. Aspects. 215 221-239 (2003).
90.Y. Hoshi, E. Suzuki, H. Shimizu: Control of crystal orientation of Ti thin films by sputtering. Electrochimica Acta, 44, 3945-3952 (1999).
91.Adli A. Saleh, V. Shutthanandan, and R. J. Smith: Observation of ultrathin metastable fcc Ti films on Al(110) surfaces. Phys. Rev. B 49, 4908-4914 (1994).
92.C.V. Ramana, N. Winward, R.J. Smith, and Bum Sik Choi: Epitaxial growth of bcc Fe films on Al(100) surfaces using Ti as an interface stabilizer. Surf. Sci. 551, 189-203 (2004).
93.Adli A. Saleh, V. Shutthanandan, N. R. Shivaparan, R. J. Smith, T. T. Tran, and S. A. Chambers: Epitaxial growth of fcc Ti films on Al(001) surfaces. Phys. Rev. B 56, 9841-9847 (1997).
94.John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, U.S.A, 1992, p.40.
95.Thaddeus B. Massalaki, Joanne L. Murray, Lawrence H. Bennett, Hugh Baker, Linda Kacprzak, Binary alloy phase diagrams, Vol. 2, American Society for Metals, Metals Park, Ohio, 1986, p.593.
96.Chien-Cheng Li, Jow-Lay Huang, Ran-Jin Lin, Chia-Hao Chen, Ding-Fwu Lii: Characterization of activated non-evaporable porous Ti and Ti-Zr-V getter films by synchrotron radiation photoemission spectroscopy. Thin Solid Films 515, 1121-1125 (2006).
97.Chien-Cheng Li, Jow-Lay Huang, Ran-Jin Lin, Hsiao-Kuo Chang, and Jyh-Ming Ting: Fabrication and characterization of non-evaporable porous getter films. Surf. Coat. Technol. 200, 1351-1355 (2005).
98.Chien-Cheng Li, Jow-Lay Huang, Ran-Jin Lin, Ding-Fwu Lii, Chia-Hao Chen: Performance characterization of non-evaporable porous Ti getter films. J. Vac. Sci. Technol. A 25(5), 1373-1380 (2007).
99.Wesley Wm. Wendlandt, Thermal Analysis, 3rd ed. (John Wiley & Sons, Inc., New York, USA, 1986), pp.137, 181.
100.David R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, Washington, 3rd, 1995, p.356.
101.H. J. T. Ellingham: Reducibility of oxides and sulfides in metallurgical processes. J. Soc. Chem. Ind. 63, 125-133 (1944).
102.Janez Kovac, Oumar Sakho, Paolo Manini, M. Sancrotti: Near-surface chemistry in Zr2Fe and ZrVFe studied by means of x-ray photoemission spectroscopy: A temperature-dependent study. J. Vac. Sci. Technol. A 18 (6), 2950-2956 (2000).