簡易檢索 / 詳目顯示

研究生: 鄒達文
Tsou, Da-Wun
論文名稱: 多樣行車環境下車輛動態定位分析
Research of Dynamic Vehicle Positioning in Different Driving Scenarios
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 53
中文關鍵詞: 全球定位系統慣性導航系統車輛動態定位分析
外文關鍵詞: Global Navigation Satellite System, Inertial Navigation System, Fusion Algorithm
相關次數: 點閱:89下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應自動化駕駛時代來臨,車輛之導航定位成為一重要議題。傳統車輛導航技術依賴全球定位系統,此方式之精度與無線訊號傳輸的環境與訊號品質息息相關,於車輛行駛的情境中,如:市區、山林或隧道......等,皆會有較不穩定的定位解產生,加入各項感測元件適時予以輔助,為一有效提升精度之方法。然而感測元件中包括對外在感測之相機,雷達……等,亦或是量測載具本身動態之慣性感測元件。相同地,外在感測元件同樣會受環境而影響效能,因此慣性感測與全球定位系統整合較為常見。傳統整合方式為利用擴展式卡爾曼濾波器進行車輛狀態的量測估計與更新,但在對於模型假設與訊號分布條件有一定之限制,往往會有特定情形失準之情況產生。本論文主要對於現行不同整合方式之定位準確度與運算量做探討,並以車輛行車動態作為區分,分別對於特定情境之定位結果加以分析,以供整合方式選用之參考。

    Autonomous vehicles are becoming popular in modern society, so navigation of autonomous vehicles is now an important issue. The traditional positioning system is satellite navigation. The accuracy of satellite navigation depends on the environment and the quality of the signal. Perceptual sensors such as camera, Lidar, and inertial sensors may also assist navigation. Similarly, information from the external environment is subject to uncertainties. Using an inertial sensor integrated with the Global Navigation Satellite System is a common approach to solving this problem. The general method used to integrate two systems is the extended Kalman filter. However, there are some assumptions and approximations in the process that may not satisfy a complex vehicle dynamic system. This thesis discusses the positioning accuracy in multi driving scenarios where different fusion algorithms are used to compare the positioning performance.

    摘要 I Abstract II 誌謝 III Content IV List of Figures VI List of Tables IX Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.3 Contributions 3 Chapter 2. Navigation System 4 2.1 Global Navigation Satellite System 4 2.2 Inertial Navigation System 5 2.2.1 Inertial measurement unit 5 2.2.2 Strapdown Inertial Navigation System 6 2.3 Integrated Navigation System 15 2.4 Coordinate Systems and Transformation 18 2.4.1 Coordinate System 18 2.4.2 Transformation 22 Chapter 3. Data Fusion Algorithm 26 3.1 Bayes Filter 26 3.1.1 Bayes Theorem 26 3.1.2 Markov process assumption 27 3.1.3 Recursive Bayes filter 28 3.2 Kalman Filter and Extended Kalman Filter 29 3.3 Unscented Kalman Filter 31 3.4 Particle Filter 33 Chapter 4. Experiment and Results 37 4.1 Experimental Devices and Setting 37 4.1.1 Devices and setting 37 4.1.2 Time tag 39 4.1.3 State transition and measurement equation 40 4.2 Comparison of different algorithms 41 4.2.1 The Static State 46 4.2.2 Line 47 4.2.3 Corner 48 4.2.4 GPS signal blocked 49 4.2.5 Time consumption 49 Chapter 5. Conclusions and Future works 50 5.1 Conclusion 50 5.2 Future works 51 References 52

    [1] Litman, T, Autonomous Vehicle Implementation Predictions Implications for Transport Planning. Victoria Transport Policy Institute, 2017
    [2] Webster, J.M., A Localization Solution for an Autonomous Vehicle in an Urban Environment. Virginia Polytechnic Institute and State University, 2007.
    [3] E.Abbott and D. Powell, Land-Vehicle Navigation Using GPS, Proceedings of the IEEE, vol. 87, no. 1, pp. 145-162, 1999
    [4] Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice. 4th ed, Springer, 1997.
    [5] A.R. Jimenez, F.S., C. Prieto and J. Guevara, A Comparison of Pedestrian Dead-Reckoning Algorithms using a Low-Cost MEMS IMU, IEEE International Symposium on Intelligent Signal Processing. 2009.
    [6] Krakiwsky, E.J., C.B. Harris, and R.V.C. Wong, A Kalman filter for integrating dead reckoning, map matching and GPS positioning. Position Location and Navigation Symposium. 1988.
    [7] Groves, P.D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2008.
    [8] Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering Transactions of the ASME, vol 82, 1960.
    [9] Bucy, R.S. and K.D. Senne, Digital Synthesis of Non-linear Filters. Automatica, vol 7: p. 287-298, 1971.
    [10] Djuric, P.M., et al., Particle Filtering, in IEEE Signal Processing Magazine. 2003.
    [11] Wan, E.A. and R.v.d. Merwe, The Unscented Kalman Filter for Nonlinear Estimation, Adaptive Systems for Signal Processing, Communications, and Control Symposium. . 153-158, 2000.
    [12] Boucher, C., A. Lahrech, and J.C. Noyer, Non-linear filtering for land vehicle navigation with GPS outage, IEEE International Conference on Systems, Man and Cybernetics. 2004.
    [13] Gade.K, Introduction to Inertial Navigation and Kalman Filtering. 2016.
    [14] Juang, J.C., Lecture Note on Strapdown Inertial Navigation and Integrated Navigation. National Cheng Kung University, 2017.
    [15] Yu, S.L, Integrated camera/Laser/IMU/RTK-GPS Localization System for Autonomous Vehicles. National Cheng Kung University, 2016.
    [16] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology - 2nd Edition, IEEE A&E Ssystems magazine. Institute of engineering and technology, London, United Kindom and the American institute of Aeronautics. p. 558, 2004.
    [17] 莊智清, 黃國興, 電子導航. 全華圖書, 2003.
    [18] Noureldin, A, T.B. Karamat, and J. Georgy, Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration, Springer Science Business Media. 2012.
    [19] S.Thrun, D.Fox, W. Burgardard and F. Dellaert, Robust Monte Carlo Localization for Mobile Robot. Artificial Intelligence, vol 128 p. 99-141, 2001.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE