簡易檢索 / 詳目顯示

研究生: 張家睿
Zhang, Jia-Ruei
論文名稱: 採用統一電力品質調節器結合太陽能發電系統與超級電容器於電力品質改善
Improvement of Electric Power Quality Using a Unified Power Quality Conditioner Integrated with a PV System and a Supercapacitor
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 118
中文關鍵詞: 統一電力品質調節器超級電容器儲能系統電力品質再生能源發電系統
外文關鍵詞: Unified power quality conditioner, supercapacitor, energy storage systems, power quality, renewable-energy power-generation systems
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著電力電子設備與非線性負載的數量迅速增加,進而導致電力系統受到這些設備嚴重的諧波汙染。除此之外,當電力系統中發生不同的故障情況,可能會導致系統中的電壓發生驟降或驟升,甚至造成電力中斷。為了改善這些電力品質問題,本論文提出統一電力品質調節器結合太陽能發電系統以及超級電容器來改善電力品質問題。由本論文之模擬結果可以得出所提出之架構能同時補償電網電流以及負載電壓,除了保護負載不受電壓干擾影響,還能減少負載注入於電網中的諧波,提供負載所需之虛功來使電網達到良好的功率因數。太陽能發電系統能藉由提供功率給超級電容器以及電網來達到節能之效用,而超級電容器則能解決傳統統一電力品質調節器無法改善的電力中斷或電壓驟降較深的問題,本論文最後驗證所提出統一電力品質調節器結合太陽能發電系統以及超級電容器於改善電力品質之有效性。

    In recent years, the proliferation of power-electronics devices and non-linear loads has resulted in a significant increase in harmonic pollution in power systems. Additionally, the occurrence of different fault conditions in the power system can lead to critical voltage sags or swell, and even power interruption. To address these power quality issues, this paper proposes a unified power quality conditioner (UPQC) integrated with a PV system and a supercapacitor (SC). The simulation results demonstrate that the proposed system effectively compensates grid current and load voltage at the same time, mitigating the impact of voltage disturbances on the load and reducing the harmonic pollution resulting from the non-linear load. Moreover, it provides the necessary reactive power to improve the grid’s power factor. The PV system can efficiently supply power to the SC and the grid while the SC also addresses the limitations of traditional UPQC by effectively handling power interruptions and critical voltage sags. Finally, this thesis validates the effectiveness of improving the power quality of the UPQC integrated with a PV system and an SC.

    摘要 I ABSTRACT II 致謝 XII 目錄 XIII 表目錄 XVIII 圖目錄 XX 符號說明 XXII 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 2 1-3 本論文的貢獻 7 1-4 研究內容概述 7 第二章 電力品質分析與探討 9 2-1 前言 9 2-2 電壓驟降 10 2-2-1 電壓驟降成因與影響 10 2-2-2 電壓驟降與電壓驟升之定義以及管制標準 12 2-3 電力諧波 14 2-3-1 電力諧波成因以及影響 14 2-3-2 電力諧波定義以及管制標準 15 2-4 三相電壓不平衡 20 2-4-1 三相電壓不平衡之成因以及影響 20 2-4-2 三相電壓不平衡的危害和對設備的影響 21 2-4-3 三相電壓不平衡之定義以及管制標準 22 2-5 電壓閃爍 23 2-5-1 電壓閃爍之成因以及影響 23 2-5-2 電壓閃爍之之定義以及管制標準 24 第三章 太陽能發電系統與超級電容器儲能系統 26 3-1 前言 26 3-2 系統架構 26 3-3 太陽能發電系統 28 3-3-1 太陽能光伏電池模型 28 3-3-2 太陽能光伏模組與太陽能陣列特性 30 3-3-3 太陽能發電系統架構參數設計 32 3-3-4 太陽能發電系統之控制方法 34 3-4 超級電容器儲能系統 36 3-4-1 超級電容器特性 36 3-4-2 超級電容器模型 38 3-4-3 超級電容器模組 40 3-4-4 超級電容器儲能系統架構參數設計 41 3-4-5 超級電容器儲能系統之控制方法 43 第四章 統一電力品質調節器 44 4-1 前言 44 4-2 被動式電力濾波器 44 4-3 主動式電力濾波器 45 4-3-1 串聯型主動式電力濾波器之基本原理 46 4-3-2 並聯型主動式電力濾波器之基本原理 47 4-3-3 混合型主動式電力濾波器之基本原理 48 4-3-4 統一電力品質調節器之基本原理 50 4-4 統一電力品質調節器之架構與控制 51 4-5 統一電力品質調節器與直流鏈之參數設計 54 4-5-1 直流鏈電壓幅度參數之設計 54 4-5-2 直流鏈電容器參數之設計 55 4-5-3 並聯型主動式電力濾波器的電感濾波器參數之設計 55 4-5-4 串聯型主動式電力濾波器的輸出變壓器參數之設計 56 4-5-5 串聯型主動式電力濾波器的輸出濾波器參數之設計 56 第五章 系統模擬與分析 57 5-1 前言 57 5-2 統一電力品質調節器UPQC針對非線性負載之電力品質分析 57 5-2-1 案例一:負載端為非線性負載之電力品質分析 58 5-2-2 案例二:非線性負載變動之電力品質分析 64 5-3 統一電力品質調節器UPQC對不良電網電壓之電力品質分析 71 5-3-1 案例三:電網端發生三相電壓驟降之電力品質分析 71 5-3-2 案例四:電網端發生三相電壓中斷之電力品質分析 77 5-3-3 案例五:電網端發生三相電壓驟升之電力品質分析 83 5-3-4 案例六:電網端發生三相電壓不平衡之電力品質分析 89 5-4 統一電力品質調節器UPQC在實際太陽照度下之模擬分析 95 5-4-1 案例七:負載端為非線性負載之電力品質分析 95 5-4-2 案例八:電網端發生電壓驟降、中斷、驟升之電力品質分析 102 第六章 結論與未來研究方向 109 6-1 結論 109 6-2 未來研究方向 110 參考文獻 112

    [1] N. Hamouda, B. Babes, S. Kahla, Y. Soufi, J. Petzoldt, and T. Ellinger, “Predictive control of a grid connected PV system incorporating active power filter functionalities,” in Proc. 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, Dec. 04-05, 2019, pp. 1-6.
    [2] P. Ray, P. K. Ray, and S. K. Dash, “Power quality enhancement and power flow analysis of a PV integrated UPQC system in a distribution network,’’ IEEE Trans. Industry Applications, vol. 58, no. 1, pp. 201-211, Jan.-Feb. 2022.
    [3] A. Rodrigues, C. Oliveira, T. J. C. Sousa, L. Machado, J. L. Afonso, and V. Monteiro, “Unified three-port topology integrating a renewable and an energy storage system with the grid-interface operating as active power filter,’’ in Proc. 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, Jul. 08-10, 2020, pp. 502-507.
    [4] G. R. Reddy, N. K. Rayaguru, K. Karthikumar, P. Chandrasekar, and P. Murthy, “Enhancement of power quality with fuzzy based UPQC in grid integrated and battery assisted PV system,’’ in Proc. 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, Oct. 01-03, 2021, pp. 1-8.
    [5] S. Devassy and B. Singh, ‘‘Performance analysis of solar PV array and battery integrated unified power quality conditioner for microgrid systems,’’ IEEE Trans. Industrial Electronics, vol. 68, no. 5, pp. 4027-4035, May 2021.
    [6] J. Liu, S. Taghizadeh, J. Lu, M. J. Hossain, S. Stegen, and H. Li, “Three-phase four-wire interlinking converter with enhanced power quality improvement in microgrid systems,” CSEE Journal of Power and Energy Systems, vol. 7, no. 5, pp. 1064-1077, Sept. 2021.
    [7] M. A. Mansor, K. Hasan, M. M. Othman, S. Z. B. M. Noor, and I. Musirin, “Construction and performance investigation of three-phase solar PV and battery energy storage system integrated UPQC,’’ IEEE Access, vol. 8, pp. 103511-103538, May 25, 2020.
    [8] P. N. Babu, R. B. Peesapati, and G. Panda, “A pre-filtering based current control strategy in grid-tied photovoltaic systems with active power filter for harmonic mitigation,’’ in Proc. 2019 IEEE Region 10 Conference (TENCON), Kochi, India, Oct. 17-20, 2019, pp. 1003-1008.
    [9] S. Devassy and B. Singh, “Design and performance analysis of three-phase solar PV integrated UPQC,’’ IEEE Trans. Industry Applications, vol. 54, no. 1, pp. 73-81, Jan.-Feb. 2018.
    [10] I. Khan, A. S. Vijay, and S. Doolla, “Nonlinear load harmonic mitigation strategies in microgrids: State of the art,’’ IEEE Systems Journal, vol. 16, no. 3, pp. 4243-4255, Sep. 2022.
    [11] M. Hasan, A. Q. Ansari, and B. Singh, “Parameters estimation of a series VSC and shunt VSC to design a unified power quality conditioner (UPQC),’’ in Proc. 2015 39th National Systems Conference (NSC), Greater Noida, India, Dec. 14-16, 2015, pp. 1-6.
    [12] N. D. Tuyen and G. Fujita, “PV-active power filter combination supplies power to nonlinear load and compensates utility current,’’ IEEE Power and Energy Technology Systems Journal, vol. 2, no. 1, pp. 32-42, Mar. 2015.
    [13] J. Ye, H. B. Gooi, and F. Wu, “Optimal design and control implementation of UPQC based on variable phase angle control method,’’ IEEE Trans. Industrial Informatics, vol. 14, no. 7, pp. 3109-3123, Jul 2018.
    [14] C. K. Sundarabalan, Y. Puttagunta, and V. Vignesh, “Fuel cell integrated unified power quality conditioner for voltage and current reparation in four-wire distribution grid,” IET Smart Grid, vol. 2, no. 1, pp. 60-68, Mar. 2019.
    [15] N. Amaro and J. M. Pina, “Improved operation of an UPQC by addition of a superconducting magnetic energy storage system,” in Proc. 2015 9th International Conference on Compatibility and Power Electronics (CPE), Costa da Caparica, Portugal, Jun. 24-26, 2015, pp. 82-86.
    [16] D. Somayajula and M. L. Crow, “An integrated dynamic voltage restorer-ultracapacitor design for improving power quality of the distribution grid,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 616-624, Apr. 2015.
    [17] P. Prasad, M. K. Jainuddin, Y. Rambabu, and V. K. R. M. Rao, “Unified power quality conditioner (UPQC) with storage device for power quality problems,” International Journal of Engineering and Science, vol. 3, no. 8, pp. 19-26, Sep. 2013.
    [18] 江榮城,電力品質實務(一),台北市:全華科技圖書公司,民國八十九年五月。
    [19] 王耀諄,電力品質,第二版,台北市:高立圖書公司,民國九十八年八月。
    [20] 林裕順,採用統一電力品質調節器結合超級電容器組於配電系統電力品質之改善,國立成功大學電機工程學系碩士論文,民國一百一十年六月。
    [21] 蔡智勝,台南科學園區輸電線路故障與電壓驟降分析,崑山科技大學電機工程系碩士論文,民國九十七年七月。
    [22] IEEE recommended practice for monitoring electric power quality, IEEE Std 1159-2016, Jun. 13, 2019.
    [23] 辜志承、沈混源、廖文彬、張源吉、蘇文,行政院國家科學委員會專題研究計畫:配電系統升級技術與效益研究—子計畫六:配電系統保護協調技術升級與效益研究(2/2),執行期間民國92年8月1日至93年7月31日。
    [24] 台灣電力股份有限公司電力調度要點,民國一百一十年二月二十三日。
    [25] 廖柏翰,採用動態電壓恢復器結合超級電容器於配電系統電力品質之改善,國立成功大學電機工程學系碩士論文,民國一百零九年七月。
    [26] K. Girigoudar, D. K. Molzahn, and L. A. Roald, “On the relationships among different voltage unbalance definitions,” in Proc. 2019 North American Power Symposium (NAPS), Wichita, KS, USA, Oct. 13-15, 2019, pp. 1-6.
    [27] 辜志承、黃少俞, “風力發電機併網對配電系統電壓閃爍之影響” 中華民國電驛協會會刊24 期,民國90年。
    [28] 許毓仁,電壓閃爍之分析與預測,國立中山大學電機工程學系博士論文,民國一百零一年七月。
    [29] 台灣電力股份有限公司電壓閃爍管制要點,民國九十七年八月十八日。
    [30] Implement PV array modules, [Online]. Available: https://ww2.math
    works.cn/help/sps/powersys/ref/pvarray.html, retrieved date: Apr. 1, 2023.
    [31] 曾慶文,比較採用不同神經網路演算法於太陽能光伏發電系統之最大功率點追蹤之性能分析,國立成功大學電機工程學系碩士論文,民國一百一十一年七月。
    [32] Sunpower SPR-305-WHT-U (305W) Solar Panel, [Online]. Available: http://www.solardesigntool.com/components/module-panel-solar/Sunpower
    /514/SPR-305-WHT-U/specification-data-sheet.html, retrieved date: Apr. 1, 2023.
    [33] B. Hauke, “Basic calculation of a boost converter’s power stage,” Texas Instrument, Dallas, TX, USA, SLVA372D, Nov. 2009.
    [34] J. Arrigo, “Input and output capacitor selection,” Texas Instrument, Dallas, TX, USA, SLTA055, Feb. 2006.
    [35] Daniel W. Hart, Power Electronics, 1st ed. New York City, NY, USA: McGraw-Hill, 2011.
    [36] U. S. Peter, D. Sahu, and D. Tirkey, “Maximum power point tracking using perturb & observe algorithm and compare with another algorithm,” International Journal of Digital Application & Contemporary research, vol. 2, issue 2, Sep. 2013.
    [37] 黃志宏,設計混和式儲能系統之自適應模糊邏輯控制器以達成混合太陽/風能為電網系統的功率平滑,國立成功大學電機工程學系碩士論文,民國一百一十一年七月。
    [38] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Applied Energy, vol. 137, no. 1, pp. 511-536, Jan. 2015.
    [39] M. Farhadi and O. Mohammed, “Energy storage technologies for high-power applications,” IEEE Trans. Industry Applications, vol. 52, no. 3, pp. 1953-1961, May-Jun. 2016.
    [40] Implement generic supercapacitor model, [Online]. Available: https://ww2.mathworks.cn/help/sps/powersys/ref/supercapacitor.html, retri-eved date: Apr. 1, 2023.
    [41] EATON, “XVM-315R9345-R,” XVM-315 Supercapacitor PCBA Module, Sep. 2019.
    [42] H. Cheng, Y. Guo, Z. Ma, and S. Bai, “Design of half-bridge bidirectional DC-DC converter control loop,” in Proc. 2020 International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent Oil Field (ICMSP), Sian, Shaanxi, China, Dec. 04-06, 2020.
    [43] 郭季賢,主動式電力濾波器改善三相不平衡負載之研究,國立雲林科技大學電機工程系碩士論文,民國一百一十年六月。
    [44] 薛儒鴻,負載端整合型電力品質調節器之設計及實現,國立台南大學電機工程學系碩士論文,民國一百年七月。
    [45] J. A. S. Olivindo and I. R. Machado, “Shunt active power filter for energy quality improvement in distributed generation systems,” in Proc. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, Jun. 19-21, 2017, pp. 146-151.
    [46] A. K. Sadigh and K. M. Smedley, “Review of voltage compensation methods in dynamic voltage restorer (DVR),” in Proc. 2012 IEEE Power and Energy Society General Meeting (PES), San Diego, CA, USA, Jul. 22-26, 2012, pp. 1-8.
    [47] 吳坤德、李平章,行政院國家科學委員會專題研究計畫:二技電機系學生實務能力提昇之教育課程設計與研究—電力濾波器教具與教材(III),執行期間民國90年8月1日至91年7月31日。
    [48] 周宏亮、吳晉昌,行政院國家科學委員會專題研究計畫:電力品質分析與改善—子計畫六:混合式電力濾波器之研究(II),執行期間民國88年8月1日至89年7月31日。
    [49] S. Sasitharan and M. K. Mishra, “Design of passive filter components for switching band controlled DVR,” in Proc. 2008 IEEE Region 10 Conference (TENCON), Hyderabad, India, Nov. 19-21, 2008, pp. 1-6.
    [50] 中央氣象局觀測資料查詢系統。[Online]. Available: https://
    e-service.cwb.gov.tw/HistoryDataQuery/, retrieved date: Apr. 1, 2023.

    無法下載圖示 校內:2028-07-19公開
    校外:2028-07-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE