| 研究生: |
劉瑋哲 Liu, Wei-Che |
|---|---|
| 論文名稱: |
基於模式化空間單元之三維建物資料建構策略 A space-based approach towards the modelling of 3D Building |
| 指導教授: |
洪榮宏
Hong, Jong-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 空間觀點 、三維建物 、城市標記語言 、工業基礎類別 |
| 外文關鍵詞: | Space perspective, 3D building, CityGML, IFC |
| 相關次數: | 點閱:105 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著測繪技術、軟硬體、三維資料標準之發展,三維空間資訊之應用已於日常生活中處處可見,然而在三維空間資訊能被普及建立之時代裡,其背後也延伸出許多課題尚待探討,如以不同測繪技術所產製之三維圖徵常具有不同程度之品質及尺度差異,因此當人類須將不同測繪技術下之三維圖徵進行整合應用時,各圖徵若不具有完整之品質及尺度描述,將可能造成使用者誤用不符應用需求之三維圖徵,降低應用分析成果之精度。以不同軟體之角度來說,各軟體所支援之三維資料格式常有所不一,故為整合不同格式下之三維圖徵,必要的資料轉換策略與對應轉換風險是應明確提出討論之課題,並非完全相信指定轉換軟體所轉換出之成果。以不同三維資料標準來說,各資料標準往往因應不同應用導向設計對應描述架構,故不同標準實際訂定之描述類別、屬性及關係描述策略等將具有一定之異質性,導致三維圖資流通與重複利用之阻礙。針對前述之問題,本研究將以空間觀點重新釐清各類物件之核心描述概念,進而基於此核心描述概念探討三維建物空間描述之基本特性,以歸納一共同三維建物描述架構,其除了將藉以提升三維建物圖徵之自我描述能力,並促進異質來源之三維建物圖徵整合,還仍能依不同應用之發展持續擴充,創造三維建物圖徵延伸應用之可能。
本文首先將重新釐清空間之定義、特性,以建立一空間物件描述之核心概念,再依據此核心概念延伸以十大空間描述之特性分析三維建物空間描述所需之圖徵類別、對應屬性及關係描述,藉以歸納出主要的三維建物描述架構。然而為促進此三維建物描述架構與台灣在地法規、管理機制及建物特性之結合,故在細項設計各類別之描述屬性前,將先整合分析台灣目前所具有之建物相關法規、管理機制及建物特性,釐清其與三維建物描述架構之融合策略,最終產出適用於台灣之三維建物空間模式化規則。此三維建物空間模式化規則實務上將與指定國際三維資料交換標準(CityGML及IFC)進行實際類別對應與差異分析,以說明此模式化策略是否能有效施行於指定國際標準,並實際套用於關聯式資料庫之建立,證明其對於我國建物描述與資料管理之效益。若以本研究所完成之成果來說,其不僅重新釐清空間物件描述之核心概念,且基於十大類特性提出三維建物空間描述架構,以提供資料建置單位有共同規則可循,同時,透過此模式化概念也延伸探討許多建物空間之實際描述案例,如典型台灣建物空間、戶空間及產權空間,藉以當作未來發展之參考方針,促進我國三維空間資訊之概念革新。
With the rapid technology evolution, 3D GIS has been successfully applied in various applications in recent years, such as urban planning, facility management or solar analysis. Although the creation of 3D geospatial data becomes increasingly easier, there remains many challenges before the benefits of 3D GIS can be fully demonstrated. For example, due to the lack of agreement on how 3D phenomena are modelled, the heterogeneity of vendor-based 3D data formats remains a big obstacle to the development of 3D GIS. Meanwhile, the diversity of 3D modeling approaches for creating geospatial data also makes the specification, data quality and applications of 3D geospatial data rather different, hence also tremendously impedes the sharing and interoperable use of 3D data collected by different stakeholders. By arguing the real world can be seen as the aggregation of an indefinite number of “space”, this research proposes a “space-based” approach for modelling the 3D earth phenomena and choose 3D building as the examples to validate the feasibility of the proposed model. This model must have built-in capability to ensure the distinguished characteristics of geospatial data can be formally presented and recorded in a standardized way, such that 3D geospatial data can be easily exchanged and shared among domain stakeholders. We start by examining the essential and necessary information for modelling a primitive space. A common 3D building description model is then extended from this primitive space, where each extended class is further enriched with semantics and thematic attributes according to the described targets. This space-based framework provides the flexibility of extended design and a hierarchical framework to group a number of lower-level spaces into a more complex space. Based on the chosen perspectives, we further compare the proposed 3D building model to two international 3D data standards, namely, CityGML & IFC. The comparative results indicate despite these two standards area widely used, both of them have their respective limitations, such that certain aspects may not be appropriately modeled or information is lost during data exchange. By using the space-based approach on the modelling of various types of buildings in Taiwan, this research further demonstrates the proposed model will not only improve the self-description ability of each classes of 3D building data, but also facilitate the possibility of sharing heterogeneous 3D building data in the SDI environment.
1.內政部 (2017)。106年度三維地形圖資技術發展工作案。
2.內政部國土測繪中心 (2017)。105及106年度五千分之一基本地形圖修測工作-106年度工作總報告。
3.內政部國土測繪中心 (2018)。107 年度多維度圖資服務平臺試辦作業。
4.內政部國土測繪中心 (2019)。108 年度三維建物模型資料標準制訂規劃採購案工作總報告。
5.內政部資訊中心 (2020)。詮釋資料標準(文件編號:NGISTD-ANC-002-2020.02.20)。
6.江渾欽 (2017)。三維地理資訊發展與三維地籍房產管理之應用。2018公共設施管線資料庫技術研討及成果發表會。
7.竹科3D-GIS平台 (2019)。(https://3d.sipa.gov.tw/)。
8.吳立新、史文中 (2003)。3DGIS與3DGMS中的空間構模技術。
9.徐業良 (2005)。設計幾何模型的建構。元智大學機械系大三機械設計課程教材。
10.桃園市政府養護工程處 (2019)。三維公共管線資料格式與作業規範。
11.高雄市政府工務局 道路挖掘管理中心(2018)。107年度高雄市道路挖掘、寬頻管道管理系統維護擴充暨三維管線整體規劃案-教育訓練簡報。
12.許家成、王世復、李信志、鍾萊 (2016)。三維地下管線建模及3D-GIS整合應用。
13.許睿叡、吳翌禎、陳懿佐 (2015)。運用Open BIM概念於設施維護管理系統之設計與實作。
14.陳雅信 (2009)。IFC建築空間資料轉換至CityGML之研究。國立交通大學土木工程學系碩士論文。
15.智慧城市3D臺北 (2019)。(https://3d.taipei/)。
16.游斯丞 (2015)。以BIM之buildingSMART IFC標準交換格式建置GIS之OGC CityGML及IndoorGML空間資料。國立交通大學土木工程學系碩士論文。
17.黃乙翎 (2018)。影響實價登錄資料加值應用成效之潛在因素探討─以資料品質觀點論。
18.劉正倫、蔡季欣、林昌鑑、湯美華(2019)。三維國家底圖建置。國土與公共治理季刊,第七卷第二期108年6月。
19.Afghantoloee, A., Doodman, S., Karimipour, F., Mostafavi, MA. (2014). Coverage Estimation of Geosensor in 3d Vector Environments. GIResearch 2014.
20.Albahri, A. H., Hammad, A. (2017). A novel method for calculating camera coverage in buildings using BIM. ITcon Vol. 22, pg. 16-33.
21.Amirebrahimi, S., Rajabifard, A., Mendis, P., Ngo, T. (2016). A Framework for A Microscale Flood Damage Assessmentand Visualization for A Building Using BIM–GIS Integration. International Journal of Digital Earth9 (4): 363–386.
22.Andriasyan, M., Moyano, J., Nieto-Julián, J.E., Antón, D. (2020). From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 12, 1094.
23.Arroyo Ohori, K., Biljecki, F., Diakité, A., Krijnen, T. F., Ledoux, H., Stoter, J. (2017). Towards an integration of GIS and BIM data : what are the geometric and topological issues? In 12th 3D Geoinfo Conference, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, 26-27 October, Melbourne, Australia.
24.Atman, J., & Trommer, G.F. (2018). Laser-camera based 3D reconstruction of indoor environments. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), 254-260.
25.Azhar, S. (2011). Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and management in engineering, 11(3), 241-252.
26.Balasubramanian, A. (2017). Digital elevation model (DEM) in GIS, Technical report, University of Mysore.
27.Becker, T., Nagel, C., Kolbe, T. H. (2013). Semantic 3D modeling of multi-utility networks in cities for analysis and 3D visualization. In Progress and New Trends in 3D Geoinformation Sciences; Springer: Berlin, Germany, pp. 41–62.
28.Beil, C. & Kolbe, T. H. (2017). CityGML and the streets of New York - A proposal for detailed street space modelling. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV(4/W5), 9-16.
29.Biljecki, F. (2017). Level of detail in 3D city models.
30.Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A. (2015). Applications of 3D City Models: State of the Art Review. ISPRS Int. J. Geo-Inf., 4, 2842-2889.
31.Blut, C., Blut, T., & Blankenbach, J. (2019). CityGML goes mobile: application of large 3D CityGML models on smartphones. International Journal of Digital Earth, 12, 25 - 42.
32.Borrmann, A. & Rank, E. (2009). Specification and implementa-tion of directional operators in a 3d spatial query lan-guage for building information models. Advanced Engi-neering Informatics 23(1), 32–44.
33.Breunig, M., Bradley, P.E., Jahn, M., Kuper, P., Mazroob, N., Rösch, N., Al-Doori, M., Stefanakis, E., Jadidi, M. (2020). Geospatial Data Management Research: Progress and Future Directions. ISPRS Int. J. Geo-Inf., 9, 95.
34.BuildingSMART (2020). What is OpenBIM?
35.Buyukdemircioglu, M., Kocaman, S., Isikdag, U. (2018). Semi-Automatic 3D City Model Generation from Large-Format Aerial Images. ISPRS Int. J. Geo-Inf., 7, 339.
36.Chaturvedi, K. & Kolbe, T. H. (2017). Future City Pilot 1 Engineering Report. OGC Document 16-098. Open Geospatial Consortium.
37.Chaturvedi, K., Kolbe, T. H. (2016). Integrating Dynamic Dataand Sensors with Semantic 3D City Models in the context ofSmart Cities. Proceedings of the 11th International 3D GeoinfoConference, ISPRS Annals of the Photogrammetry, RemoteSensing and Spatial Information Sciences, IV-2/W1, Athens,Greece.
38.Chaturvedi, K., Smyth, C. S., Gesquiere, G., Kutzner, T., Kolbe, T. H. (2017). Managing Versions and History Within Semantic 3D City Models for the Next Generation of CityGML. Lecture Notes in Geoinformation and Cartography, Advances in 3D Geoinformation, Springer, Cham, 191-206
39.Chundeli, FA. (2017). Using 3D GIS as a decision
support tool in urban plan-ning. In: Proceedings of the 10th international conference on theory and practice of electronic governance. ACM, New York, pp 401–404
40.Coors, V. (2003). 3D GIS in Networking environments. Computer, Environment and Urban Systems, Vol. 27 (4), 345-357.
41.Costamagna, E. (2014). Geographic Information Science (GIS) 3D. In: Michalos A.C. (eds) Encyclopedia of Quality of Life and Well-Being Research. Springer, Dordrecht
42.Davidović, M., Petrović, V., Borisov, M. (2016). Analysis of the Display of Digital Terrain Models using different interpolation methods, Geodetski list, 70, 3, pp.267-282.
43.De Laat, R. & Van Berlo, L. (2011) Integration of BIM and GIS: The development of the CityGML GeoBIM extension.In3D Geo-Information Sciences; Springer: Berlin/Heidelberg, Germany, pp. 211–225
44.De Roo, B., Bourgeois, J., de Maeyer, P. (2016). Usability assessment of a virtual globe-based 4D archaeological GIS. In Advances in 3D Geoinformation; Springer International Publishing: Cham, Switzerland, in press.
45.Döllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., Teichmann, K. (2006). The virtual 3d city model of berlin-managing, integrat-ing, and communicating complex urban information. In Pro-ceedings of the 25th urban data management symposium UDMS(Vol. 2006, pp. 15–17).
46.Douass, S., Kbir, M.A. (2019). 3D Modeling of Flood Areas. In: Ben Ahmed M., Boudhir A., Younes A. (eds) Innovations in Smart Cities Applications Edition 2. SCA 2018. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham.
47.El-Hosaini, H. (2015). Locating and Positioning Solar Panels in a 3D City Model: A Case Study of Newcastle, UK.
48.El-Mekawy, M., Östman, A., Hijazi, I. (2012). A Unified Building Model for 3D Urban GIS. ISPRS Int. J. Geo-Inf., 1, 120-145.
49.El-Mekawy, M., Paasch, J.M., Paulsson, J. (2014). Integration of 3D Cadastre, 3D Property Formation and BIM in Sweden.
50.Elwannas, R. (2011). 3D GIS : it’s a brave new world. FIG Working Week 2011, Marrakech, Morocco.
51.Emamgholian, S., Taleai, M., Shojaei, D. (2017). A novel approach for 3D neighbourhood analysis. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W4, 361–365, https://doi.org/10.5194/isprs-archives-XLII-4-W4-361-2017.
52.Feng, D., Haase-Schuetz, C., Rosenbaum, L., Hertlein, H., Duffhauss, F., Gläser, C., Wiesbeck, W., Dietmayer, K.C. (2019). Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. ArXiv, abs/1902.07830.
53.Foley, J., van Dam, A., Feiner, S., Hughes, J. (1995). Computer Graphics: Principles and Practice. Addison Wesley, 2nd Ed.
54.Gröger, G. & Plümer, L. (2005). How to Get 3-D for the Price of 2-D—Topology and Consistency of 3-D Urban GIS. Geoinformatica 9, 139–158. https://doi.org/10.1007/s10707-005-6431-2
55.Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K. H., Gröger, G., Kolbe, T. H., Nagel, C. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard – OGC Document No. 12-019. Open Geospatial Consortium (2.0.0. edn.).
56.Hijazi, I., Ebert, V., Donaubauer, A., Kolbe, T. H. (2018). Combining Urban Metabolism Methods and Semantic 3D City Models. Proceedings of the 13th International 3D GeoInfo Conference 2018 (ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences), ISPRS, 63-70.
57.Hong, J. H., Lu, Y. H., Chen, C. H. (2019). The use of CCTV in the emergency response: A 3D GIS perspective. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4/W15), 19-25. https://doi.org/10.5194/isprs-archives-XLII-4-W15-19-2019
58.ISO. (2002). ISO 10303-21 : Industrial automation systems and integration — Product data representation and exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure
59.ISO. (2004). ISO 10303-11 : Industrial automation systems and integration - Product data representation and exchange - Part 11: Description methods: The EXPRESS language reference manual
60.ISO. (2007). ISO 12006-3 : Building construction - Organization of information about construction works - Part 3: Framework for object-oriented information
61.ISO. (2013). ISO 19157 : Geographic information — Data quality
62.ISO. (2016). ISO 29481-1 : Building information models — Information delivery manual
63.ISO. (2018). ISO 16739-1 : Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries
64.ISO. (2018). ISO 19650-1 : Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) — Information management using building information modelling — Part 1: Concepts and principles
65.ISO. (2020). ISO19136 : Geographic information - Geography Markup Language (GML)
66.Jusuf, S.K., Mousseau, B., Godfroid, G., Soh, J.H.V. (2017). Path to an Integrated Modelling between IFC and CityGML for Neighborhood Scale Modelling. Urban Sci., 1, 25.
67.Kilsedar, C.E., Fissore, F., Pirotti, F., Brovelli, M.A. (2019). Extraction and visualization of 3D building models inurban areas for flood simulation.ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,XLII-2/W11,669–673.
68.KIRA-digi. (2019). The Kalasatama Digital Twins Project.
69.Kitsakis, D. (2019). Legal Requirements for Real Property Stratification.
70.Kolbe, T. H. & Gröger, G. (2003). Towards unified 3D city models.
71.Kutzner, T. & Kolbe, T. H. (2018). CityGML 3.0 : Sneak Preview. Publikationen der DGPF,pp.835-839 Band 27.
72.Kutzner, T., Chaturvedi, K., Kolbe, T.H. (2020). CityGML 3.0: New Functions Open Up New Applications. PFG 88, 43–61. https://doi.org/10.1007/s41064-020-00095-z
kw/typo3_src/
73.Leszek K. (2015) Environmental and Urban Spatial Analysis Based on a 3D City Model. In: Gervasi O. et al. (eds) Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science, vol 9157. Springer, Cham.
74.Li, W., Zlatanova, S., Diakite, A.A., Aleksandrov, M., Yan, J. (2020). Towards integrating heterogeneous data: A spatial DBMS solution from a CRC-LCL project in australia. ISPRS Int. J. Geo-Inf., 9, 63.
75.Liebich, T. (2009). IFC 2x Edition 3 Model Implementation Guide. buildingSMART
76.Lindsay, M., Jessell, M. W., Ailleres, L., Perrouty, S., de Kemp, E. A., Betts, P. G. (2013). Geodiversity: exploration of 3D geological model space. Tectonophysics, 594, 27 - 37.
77.Liu, L. & Zlatanova, S. (2011). Towards a 3D network model for indoor navigation. In Urban and Regional Data Management; CRC Press: Delft, the Netherlands, pp. 79–94.
78.Lowner, M. O., Groger, G., Benner, J., Biljecki, F., Nagel, C. (2016). Proposal for a new LOD and Multi-Representation Concept for CityGML. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV(2/W1), 3-12.
79.Mi, S. (2019). 3D cadastral visualization and integration of CityGML3.0 with Land Administration Domain Model.
80.Mohammad, R., Florent L., Pierre A. (2017). Semantic Segmentation of 3D Textured Meshes for Urban Scene Analysis. ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, 123, pp.124 - 139. ff10.1016/j.isprsjprs.2016.12.001ff. ffhal-01469502
81.Molenaar, M. (1992). A Topology for 3D Vector Maps. ITC Journal 1992-1.
82.Morosini, R. & Zucaro, F. Land use and urban sustainability assessment: a 3D-GIS application to a case study in Gozo. (2019).
83.Nagel, C., Stadler, A., Kolbe, T. H. (2009). Conceptual Requirements for the Automatic Reconstruction of Building Information Models from Uninterpreted 3d Models.
84.Özdemir, E., Remondino, F., Golkar, A. (2019). Aerial point cloud classification with deep learning and machine learning algorithms. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W18, 843–849, https://doi.org/10.5194/isprs-archives-XLII-4-W18-843-2019.
85.Pédrinis, F., Morel, M., Gesquière, G. (2015). Change detection of cities. In 3D Geoinformation Science; Springer International Publishing: Cham, Switzerland, pp. 123–139.
86.Qin, R. (2014). Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery. ISPRS J. Photogramm. Remote Sens., 96, 179–192.
87.Rahman, A. A., Pilouk, M., Zlatanova, S. (2001). The 3D GIS Software Development: Global Efforts fromResearchers and Vendors. Geoinformation Science Journal 1 (13).
88.Rook, M., Biljecki, F., Diakité, A.A. (2016). Towards automatic semantic labelling of 3D city models. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4 (2W1) : 23-30. ScholarBank@NUS Repository.
89.Sacks, R., Eastman, C. M., Lee, G. (2004). Parametric 3D modeling in building construction with examples from precast concrete. Automationin construction 13.3: 291-312.
90.Salhab, N. (2018). Automatic Conversion of CityGML to IFC. MSc thesis in Geomatics for the Built Environment in TUDelft.
91.Salim, M. J. (2017). 3D Spatial Information Intended for SDI : A Literature Review, Problem and Evaluation, Journal of Geographic Information System, pp.535–545. doi: 10.4236/jgis.2017.95033.
92.Schwab, B. & Kolbe, T. H.(2019). Requirement analysis of 3D road space models for automated driving. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-4/W8, 99–106.
93.Senate Departments of Economics and Urban Development of Berlin
94.SG-SPACE Secretariat. (2012). Country Report – Singapore : The Singapore National Spatial Data Infrastructure.
95.Shalabi, F. & Turkan, Y. (2016). IFC BIM-based facility management approach to optimize data collection for corrective maintenance. Journal of Performance of Constructed Facilities, Vol. 31, No.1, 04016081.
96.Sharkawi, K. H. & Abdul-Rahman, A. (2014). Towards an efficient city inventory management system for urban authorities in developing countries—The case of 3D change detection. The Electron. J. Inf. Syst., 60, 1–13.
97.Shi, W. Z., Yang, B.S., Li, Q.Q. (2003). An object-oriented datamodel for complex objects in three-dimensional geographicinformation systems. International Journal of GeographicInformation Science, Vol. 17 (5), pp. 411–430.
98.Shojaei, D., Kalantari, M., Bishop, I.D., Rajabifard, A., Aien, A. (2013). Visualization requirements for 3D cadastral systems. Comput. Environ. Urban Syst., 41, 39–54.
99.Slingsby, A. & Raper, J. (2008). Navigable space in 3D city models for pedestrians. In Advances in 3D Geoinformation Systems; van Oosterom, P., Zlatanova, S., Penninga, F., Fendel, E., Eds.; Springer: Berlin, Germany, pp. 49–64.
100.Smith, B. & Varzi, A. C. (2000). Fiat and bona fide boundaries. Philos Phenomenol Res 60(2):401–420. https://doi.org/10.2307/2653492
101.Stadler, A. & Kolbe, T. H. (2007). Spatio-Semantic Coherence in the Integration of 3D City Models. In: Proceedings of 5th International ISPRS Symposium on Spatial Data Quality ISSDQ 2007 in Enschede, The Netherlands, 13-15 June 2007.
102.Stoter, J. E., van den Brink, L., Vosselman, G., Goos, J., Zlatanova, S., Verbree, E., ... Thorn, S. (2011). A generic approach for 3D SDI in the Netherlands. In Proceedings of the joint ISPRS workshop on 3D city modelling and applications and the 6th 3D GeoInfo conference, 26-28 June 2011 (pp. 327-348)
103.Stoter, J., Salzmann, M. (2003). Towards a 3D cadastre: Where do cadastral needs and technical possibilities meet? Comput. Environ. Urban Syst., 27, 395–410.
104.Stouffs, R., Tauscher, H., Biljecki, F. (2018). Achieving Complete and Near-Lossless Conversion from IFC to CityGML. ISPRS Int. J. Geo-Inf., 7, 355.
105.Su, Y., Lee, Y. C., Lin, Y. C. (2011). Enhancing Maintenance Management using Building Information Modeling in Facilities Management. 2011 Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC), Seoul, Korea. 752–757.
106.Sulistyah, U. D., & Hong, J. H. (2019). The use of 3D building data for disaster management: A 3D SDI perspective. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W8), 395-402.
107.Tang, K. & Xu, J.K. (2012). Research on application of airport simulation system based on 3D GIS. Appl. Mech. Mater., 198–199, 717–720.
108.Tangelder, J. & Veltkamp, R. (2003). Polyhedral model retrieval using weighted point sets. Int. J. Image Graph., 3:1-21.
109.Teo, T. A. & Cho, K. H. (2016). BIM-oriented indoor network model for indoor and outdoor combined route planning. Adv. Eng. Inform., 30, 368–282.
110.Tobias, P. (2015). An investigation into the possibilities of BIM and GIS cooperation and utilization of GIS in the BIM Process. Geoinformatics FCE CTU 14(1) 65-78
111.Tse, R.O., Gold, C., Kidner, D. (2008). 3D City Modelling from LIDAR Data. In: van Oosterom, P., Zlatanova, S., Penninga, F., Fendel, E.M. (eds) Advances in 3D Geoinformation Systems. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg.
112.Tseng, Y. & Wang, S. (2003). Semiautomated building extraction based on CSG model-image fitting. Photogrammetric Engineering & Remote Sensing, Vol.69, No. 2, pp. 171-180.
113.Tsiliakou, E. & Dimopoulou, E. (2016). 3D network analysis for indoor space applications. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W2, 147–154, https://doi.org/10.5194/isprs-archives-XLII-2-W2-147-2016.
114.Ujang, U., Azri, S., Zahir, M., Abdul Rahman, A., Choon, T. Urban Heat Island Micro-Mapping via 3D CityModel. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.2018,XLII-4/W10, 201–207.
115.Universe. (2020, Aug 19). In Wikipedia, the free encyclopedia. From http://en.wikipedia.org/wiki/Universe
116.van Berlo, L. & Bomhof, F. (2014). Creating the Dutch national BIM levels of development. in Computing in Civil and Building Engineering (2014), pp. 129–136.
117.Virtanen, J.P., Kurkela, M., Hyyppä, H., Niemi, S., Kalliokoski, S., Vanhatalo, S., Hyyppä, J., Haggrén, H. (2016). Visualization of building models and sensor data using open 3D platforms. In Proceedings of the CIB WorldBuilding Congress, New York, NY, USA.
118.Virtual Singapore. (2018). (https://www.nrf.gov.sg/programmes/virtual-singapore)
119.Wieland, M., Nichersu, A., Murshed S, Wendel, J. (2015). Computing Solar Radiation on CityGML Building Data. AGILE.
120.Willenborg, B., Pültz, M., & Kolbe, T.H. (2018). Integration of semantic 3D city models and 3D mesh models for accuracy improvements of solar potential analyses. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 223-230.
121.Willenborg, B., Sindram, M., Kolbe, T. H. (2018). Applications of 3D City Models for a Better Understanding of the BuiltEnvironment. In: M. Behnisch and G. Meinel (eds), Trends inSpatial Analysis and Modelling, Geotechnologies and the En-vironment, Vol. 19, Springer International Publishing, Cham,pp. 167–191.
122.Xu, X., Ding, L., Luo, H., Ma, L. (2014). From Building Information Modeling to City Information Modeling. Journal of Information Technology in Construction, v. 19, p. 01-16.
123.Yastikli, N., & Çetin, Z. (2017). Automatic 3D building model generations with airborne lidar data.
124.Zadeh, P. A., Wei, L., Dee, A., Pottinger, R., Staub-French, S. (2019). BIM-CITYGML data integration for modern urban challenges. ITcon Vol. 24, pg. 318-340.
125.Zlatanova, S. & Beetz, J. (2012). 3D spatial information infrastructure: The case of Port Rotterdam. In Usage, Usability, and Utility of 3D City Models— European COST Action TU0801; Leduc, T., Moreau, G., Billen, R., Eds.; EDP Sciences: Nantes, France, pp. 1–8.
126.Zlatanova, S. (2000). 3D GIS for urban development. Ph.D. Dissertation, ITC, The Netherlands, 222pp.
127.Zlatanova, S. (2008). SII for emergency response : the 3D challenges. In: Chen, J., Jiang, J. and Nayak, S. (Eds,). Proceedings of the XXI ISPRS Congress, Part B4-TYC IV, July 2008, Beijing, pp. 1631-1637.
128.Zlatanova, S. (2015). Topological Relationships and Their Use.