簡易檢索 / 詳目顯示

研究生: 蘇瑪
Pal, Soma
論文名稱: 聲波二維氣體溫度重建演算法之開發與系統實現
Development of Reconstruction Algorithm and Practical System for Acoustic Gas Tomography
指導教授: 黃致憲
Huang, Chih-Hsien
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 72
中文關鍵詞: 聲溫斷層掃描聲熱成像高度集中的溫度分佈熱點跟踪急劇溫度梯度飛行時間
外文關鍵詞: Acoustic Temperature Tomography, Acoustic Thermography, Highly Centralized Temperature Distribution, Hotspot Tracking, Sharp Temperature Gradient, Time-of-Flight
相關次數: 點閱:183下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文介紹了聲熱成像或斷層成像 (AT) 作為一種可行的非侵入性方法來監測高爐、鍋爐等工業過程中的氣體溫度分佈的調查和分析。溫度被認為是製造企業中用於保證氣體溫度分佈的關鍵參數。高品質的產品線。例如,在高爐中,鋼的質量與爐內氣體溫度的分佈密切相關。因此,監測高溫氣體並跟踪爐內熱點的位置對於提高生產率至關重要。
    大多數現有的基於聲學的重建算法都是在相對均勻的溫度分佈下開發的。他們跟踪給定區域的峰值溫度或熱點的能力很少被討論。因此,在本研究中,提出並演示了一種專用於高度集中氣體溫度分佈的聲溫層析成像重建方法。所提出的方法可以有效地可視化和測量峰值溫度,準確度為 5.89%。它還可以跟踪熱點向新位置的移動。
    AT 使用平面上多條路徑的聲速來重建二維氣體溫度分佈。因此,對於溫度圖的最終重建,重建方法和正確的聲速估計都是至關重要的。然而,由於缺乏關鍵信息描述,例如估計飛行時間 (TOF) 或聲速的方法,現有文獻中報告的結果難以重現。因此,在本研究中,提出並演示了另一種提高用於測量聲速的聲學平台精度的新技術。使用所提出的方法,在具有臨界溫度分佈的環境中實現了 ±3% 到 ±5% 的聲速精度。隨後,通過採集的聲速重建的二維溫度圖也與熱電偶陣列的結果相匹配。

    This dissertation presents the investigation and analysis of acoustic tomography or thermography (AT) as a viable noninvasive method for monitoring gas temperature distribution in industrial processes such as blast furnaces, boilers, etc. Temperature is considered a critical parameter in the manufacturing enterprise for guaranteeing a high-quality product line. For instance, in a blast furnace, the quality of steel is closely related to the distribution of gas temperature inside the furnace. Thus, monitoring the high-temperature gas and tracking the position of the hotspot inside the furnace is crucial for productivity.
    Most of the existing acoustic-based reconstruction algorithms are developed in with relatively uniform temperature profiles. Their capability to track the peak temperature or hotspot in a given region is rarely discussed. Consequently, in this research, a reconstruction method of acoustic temperature tomography dedicated to highly centralized gas temperature distribution is proposed and demonstrated. The proposed method could effectively visualize and measure the peak temperature with an accuracy of 5.89%. It can also track the movement of hotspots to new locations.
    Since AT uses sound speeds from multiple paths over a plane to reconstruct 2-D gas temperature distributions. Therefore, for the final reconstruction of the temperature map, both the reconstruction method and correct sound speed estimation are critical. However, due to a lack of crucial information descriptions, such as methods for estimating the time of flight (TOF) or sound speed, the results reported in the existing literature were difficult to reproduce. Thus, in the next part of the research, another novel technique to improve the accuracy of an acoustic platform for measuring acoustic speeds is proposed and demonstrated. With the proposed method, a sound speed accuracy between ± 3% to ±5% in an environment with a critical temperature distribution was achieved. Later, the 2-D temperature map reconstructed by acquired acoustic velocities also matches the results from the thermocouple array.

    摘要 i Abstract ii 誌謝 iii Acknowledgements iv Table of Contents /目錄 v List of Tables / 表格 vii List of Figures / 圖片 viii Nomenclature x Chapter 1. Introduction ……………………………………… 1 1.1 Motivation 2 1.2 Goals and Objectives of the Research 4 1.3 Scope and Limitations 4 1.4 Workflow Overview 5 Chapter 2. General Literature Survey ……………………… 6 2.1 Temperature measurement methods in the furnace 8 2.1.1 Contact method 8 2.1.2 Non-contact method 11 2.2 Summary 17 Chapter 3. The Temperature Profile Reconstruction: Acoustic Hotspot Tracking Algorithm ………… 18 3.1 Need for the Development of Hotspot Tracking Algorithm 18 3.2 Fundamentals of Acoustic Pyrometer System and Tomographic Approach 21 3.3 Reconstruction Methodology 23 3.3.1 Conceptual Description of Spatial Moving Sampling Method 23 3.3.2 Phantom of Numerical Simulation 24 3.3.3 Investigation with Existing Method 25 3.3.4 Proposed Method and Reconstruction Procedure 27 3.4 Result of the Numerical Simulation 32 3.5 Experimental Validation 37 3.6 Summary 40 Chapter 4. A Novel Method for Acoustic Speed Measurement ……………………………………. 41 4.1 Overview of Acoustic Platform 41 4.2 Methodology for Time-of-Flight Estimation 44 4.2.1 Investigation for the existing method 44 4.2.2 The Proposed TOF Estimation 48 4.2.3 Process flow of the TOF Estimation 50 4.3 The Architecture of the Employed Acoustic Platform 52 4.3.1 General System Organization 52 4.3.2 Description of the System 53 4.3.3 User Interface 56 4.4 Result and Discussion 57 4.5 Summary 61 Chapter 5. Conclusion and Future Work …………………… 62 5.1 Conclusion 62 5.2 Future Work 63 References ………………………………………………………... 65

    References

    [1] A. Muhammad, M. Mohamed, Y. Zhang, and S. Iglauer, “X-ray tomography imaging of shale microstructures: A review in the context of multiscale correlative imaging”, International Journal of Coal Geology, vol. 233, no. 103641, Jan. 2021.
    [2] X. Cao, Z. Huang, C. He, W. Wu, L. Xi, Y. Li, and D. Fang, “In-situ synchrotron X-ray tomography investigation of the imperfect smooth-shell cylinder structure”, Composite Structures, vol. 267, no. 113926, Jul. 2021.
    [3] R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. Testarelli, D. Di Nardo, “An Update of the Possible Applications of Magnetic Resonance Imaging (MRI) in Dentistry: A Literature Review”, Journal of Imaging, vol. 7, no. 5, pp. 75, Apr. 2021.
    [4] D. R. Weinberger and E. Radulescu, “Structural Magnetic Resonance Imaging All Over Again”, JAMA Psychitary, vol. 78, no. 1, Jul. 2021.
    [5] D. Zhao, “Importance of later phases in seismic tomography”, Physics of the Earth and Planetary Interiors, vol. 296, no. 106314, Nov. 2019
    [6] W. Krzemien, A. Gajos, K. Kacprzak, K. Rakoczy, and G. Korcyl, “J-PET Framework: Software platform for PET tomography data reconstruction and analysis”, SoftwareX, vol. 11, no. 100487, 2020.
    [7] A. Rahmim, M. A. Lodge, N. A. Karakatsanis, V. Y. Panin, Y. Zhou, A. McMillan, S. Cho, H. Zaidi, M. E. Casey and R. L. Wahi, “Dynamic whole-body PET imaging: principles, potentials and applications”, European Journal of Nuclear Medicine and Molecular Imaging, vol. 46, pp. 501 – 518, 2019.
    [8] J. Wiskin, B. Malik, R. Natesan, and M. Lenox, “Quantitative assessment of breast density using transmission ultrasound tomography”, Medical Physics, vol. 46, no. 6, pp. 2610 – 2620, 2019.
    [9] M. Pelin, B. Paquette, L. Revel, M. Landecy, S. Bouveresse, and E. Delabrousse, “Acute appendicitis: Factors associated with inconclusive ultrasound study and the need for additional computed tomography”, Diagnostic and Interventional Imaging, vol. 99, no. 12, pp. 809 – 814, 2018.
    [10] M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review”, Photoacoustics, vol. 10, pp. 2213 – 5979, 2018.
    [11] W. Choi, D. Oh, and C. Kim, “Practical photoacoustic tomography: Realistic limitations and technical solutions”, Journal of Applied Physics, vol. 127, no. 230903, 2020.
    [12] R. L. Wayson and K. Kaliski, “Acoustic Modeling of Meteorological Effects on Roadway Noise”, Transportation Research Record: Journal of the Transportation Research Board, vol. 2675, no. 7, 2021.
    [13] X. Bao, Z. Zhou, and Y. Wang, “Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection”, PhotoniX, vol. 2, no. 14, 2021.
    [14] A. Kaneko, X. H. Zhu, and J. Lin, “Coastal acoustic tomography”, Elsevier, 2020.
    [15] A. L. Ivanov, E. V. Shein, and E. B. Skvortsova, “Tomography of Soil Pores: from Morphological Characteristics to Structural–Functional Assessment of Pore Space”, Eurasian Soil Science, vol. 52, pp. 50 – 57, 2019.
    [16] A. Katunin, A. W. Katunin, and K. Dragan, “Impact Damage Evaluation in Composite Structures Based on Fusion of Results of Ultrasonic Testing and X-ray Computed Tomography”, Sensors, vol. 20, no. 7, 2020.
    [17] J. A. Kleppe, “Acoustic Gas Flow Measurement in Large Ducts or Stacks”, Sensors, vol. 85-87, pp. 18 – 24, May 1995.
    [18] J. A. Kleppe, “Adapt acoustic pyrometer to measure flue-gas flow”, Power, vol. 139, no. 8, pp. 46 - 47, Aug. 1995.
    [19] A. Babich and D. Senk, “17 - Recent developments in blast furnace iron-making technology”, in Iron Ore, Woodhead Publishing, 2015, pp. 505 – 547. ISBN 9781782421566. [Online] https://doi.org/10.1016/B978-1-78242-156-6.00017-4.
    [20] Bolbrinker, Artur-Klaus, and Verein Deutscher Eisenhüttenleute, “Steel manual”, Verlag Stahleisen, 1992.
    [21] A. Babich, D. Senk, S. L. Yaroshevskiy, N. S. Chlaponin, V. V. Kochura, and A. V. Kuzin, “Effect of nut coke on blast furnace shaft permeability”, in Procesding of 3rd Int. Conference on Process Development in Iron and Steelmaking (SCANMET III), vol. 2, pp. 227 – 236, Sweden, 2008.
    [22] R. Pyszko, T. Brestovicˇ, N. Jasminská, M. Lázár, M. Machu, M. Puškár, and R. Turisová, “Measuring temperature of the atmosphere in the steelmaking furnace”, Measurement, vol. 75, pp. 92 – 103, Aug. 2015.
    [23] J. Y. Lee, J. S. Choi, T. F. Yuan, Y. S. Yoon, and D. Mitchell, “Comparing Properties of Concrete Containing Electric Arc Furnace Slag and Granulated Blast Furnace Slag”, Materials, vol. 12, no. 9, pp. 1371, Apr. 2019.
    [24] A. Piemonti , A. Conforti, L. Cominoli, S. Sorlini, A. Luciano, and G. Plizzari, “Use of Iron and Steel Slags in Concrete: State of the Art and Future Perspectives”, Sustainability, vol. 12, no. 2, pp. 556, Jan. 2021.
    [25] M. F. Riley, L. Rosen, and R. Drnevich, “Mitigating CO2 Emissions in the Steel Industry: A regional approach to a global need”, Iron and Steel Technology, vol. 7, no. 2, pp. 63 – 72, Feb. 2010.
    [26] L. Coppola, S. Lorenzi, and A. Buoso, “Electric Arc Furnace Granulated Slag as a Partial Replacement of Natural Aggregates for Concrete Production”, in Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, Università Politecnica delle Marche, Ancona, Italy, pp. 28–30, Jun. 2010.
    [27] J. W. Yang, Q. Wang, P. Y. Yan, and B. Zhang, “Influence of steel slag on the workability of concrete”, Key Engineering Materials, vol. 539, pp. 235–238, Jan. 2013.
    [28] L. G. Blevins and W. M. Pitts, “Modeling of bare and aspirated thermocouples in compartment fires”, Fire Safety Journal, vol. 33, no. 4, pp. 239 – 259, Nov. 1999.
    [29] L. Michalski L, K. Eckersdorf, J. Kucharski, and J. McGhee, “17- Temperature Measurement of Fluids”, in Temperature Measurement, Wiley Publication, New York, 2nd Edition, 2001.
    [30] M. Brestovicˇ, N. Jasminská, M. C. Arnogurská, M. Puškár, M. Kelemén, and M. Filo, “Measuring of thermal characteristics for Peltier thermopile using calorimetric method”, Measurement, vol. 53, pp. 40 – 48, 2014.
    [31] G. L. Tomei, “Steam: its generation and use”, in Steam, Babcock & Wilcox Cop. Publication, North Carolina, 42nd Edition, 2015.
    [32] G. Kychakoff, A. F. Hollingshead, and S. P. Boyd, “Use of acoustic temperature measurements in the cement manufacturing pyroprocess”, Conference Record Cement Industry Technical Conference, Kansas City, Missouri, USA, pp. 23 – 33, May 2005.
    [33] J. Chedaille and Y. Braud, “Measurements in Flames”, in Industrial flames: Volume 1, Edward Arnold Limited, London, 1972.
    [34] K. J. Young, S. N. Ireland, M. C. Melendez-Cervates, and R. Stones, “On the systematic error associated with the measurement of temperature using acoustic pyrometry in combustion products of unknown mixture”, Measurement Science and Technology, vol. 9, no. 1, pp. 1 – 5, 1998.
    [35] A. Z. Graggen, H. Friess, and A. Steinfeld, “Gas temperature measurement in thermal radiating environments using a suction thermocouple apparatus”, Measurement Science and Technology, vol. 18, pp. 3329 – 3334, Jul. 2007.
    [36] F. Rinaldi, and N. Behzad, “Temperature measurement in WTE boilers using suction pyrometers”, Sensors (Basel, Switzerland), vol. 13, no. 11, pp. 15633 – 15655, Nov. 2013.
    [37] {Collective of authors}, “Pyrometer- Handbook”, IMPAC Infrared GmbH, Germany, 2004.
    [38] N. E. Tootla, “Investigation into methods for the calculation and measurement of pulverized coal boiler flue gas furnace exit temperature”, University of Cape Town, 2016.
    [39] Geoff Raikes, “Temperature Reconstruction and Acoustic Time of Flight determination for Boiler Furnace Exit Temperature Measurement”, University of Cape Town, 2017.
    [40] Z. W. Jiang, Z. X. Luo, and H. C. Zhou, “A simple measurement method of temperature and emissivity of coal-fired flames from visible radiation image and its application in a CFB boiler furnace”, Fuel, vol. 88, no. 6, pp. 980–987, Jun. 2009.
    [41] C. Lou and H. C. Zhou, “Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation”, Combustion and Flame, vol. 143, no. 1–2, pp. 97–105, 2005.
    [42] H. C. Zhou, C. Lou, Q. Cheng, Z. Jiang, J. He, B. Huang, Z. Pei, and C. Lu, “Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace”, Proceedings of the Combustion Institute, vol. 30, no. 1, pp. 1699 – 1706, 2005.
    [43] D. Liu, J. yan, and K. Cen, “On the treatment of scattering for three – dimensional temperature distribution reconstruction accuracy in participating medium”, International Journal of Heat and Mass Transfer, vol. 54, pp. 1684 – 1687, 2011.
    [44] W. Huajian, H. Zhifeng, W. Dundun, L. Zixue, S. Yipeng, F. Qingyan, L. Chun, and Z. Huaichun, “Measurements on flame temperature and its 3D distribution in a 660 MWe arch-fired coal combustion furnace by visible image processing and verification by using an infrared pyrometer”, Measurement Science and Technology, vol. 20, no. 11, pp. 12, Nov. 2009.
    [45] S. Zhang, G. Shen, L. An, Y. Niu, and G. Jiang, “Monitoring ash fouling in power station boiler furnaces using acoustic pyrometry”, Chemical Engineering Science, vol. 126, pp. 216 – 223, Apr. 2015.
    [46] S. P. Zhang, L. An, G. Q. Shen, and Y.G. Niu, “Acoustic Pyrometry System for Environmental Protection in Power Plant Boilers”, Journal of Environmental Informatics, vol. 23, no. 2, pp. 24 – 35, Jun. 2014.
    [47] K. Srinivasan, T. Sundararajan, S. Narayanan, T. J. S. Jothi, and C. S. L. V. Rohit Sarma, “Acoustic pyrometry in flames”, Measurement, vol. 46, no. 1, pp. 315 – 323, Jan. 2013.
    [48] A. Kleppe, J. Maskaly and G. Beam, "The application of image processing to acoustic pyrometry," Proceedings of 3rd IEEE International Conference on Image Processing, vol. 2, pp. 657 – 659, 1996.
    [49] Y. Bao, J. Jia, and N. Polydorides, “Real-time temperature field measurement based on acoustic tomography”, Measurement Science and Technology, vol. 28, no. 074002, Jun. 2017.
    [50] X. Wang, H. Chen, U. Sultan, X. Zhu, Z. Wang and G. Xiao, "A Brief Review of the Combustion Diagnosing Techniques for Coal-Fired Boilers of Power Plants in China", IEEE Access, vol. 7, pp. 126127 - 126136, Sept. 2019.
    [51] J. Lu, D. Han, and L. Zhang, “Accuracy evaluation of a numerical simulation model of nasal airflow”, Acta oto-laryngologica, vol. 135, no. 5, Apr. 2014.
    [52] S. Yamaguchi, T. Kawanami, and K. Wataru, “A Study On Shape Optimization For an Underwater Vehicle Based On Numerical Simulation”, The Fifth ISOPE Pacific/Asia Offshore Mechanics Symposium, Daejeon, Korea, pp. 43 – 48, Nov. 2002.
    [53] C. Shiwan, Y. Chunh, and W. Guibin, “Evolution of thermal damage and permeability of Beishan granite”, Applied Thermal Engineering, vol. 110, no. 5, pp. 1533 – 1542, Jan. 2017.
    [54] G. Kychakoff, A. F. Hollingshead, and S. P. Boyd, “Use of acoustic temperature measurements in the cement manufacturing pyroprocess”, IEEE Conference Record Cement Industry Technical Conference, USA, pp. 23 – 33, May 2005.
    [55] K. Gutknecht, M. Cloots, R. Sommerhuber, and K. Wegenerc, “Mutual comparison of acoustic, pyrometric and thermographic laser powder bed fusion monitoring”, Materials & Design, vol. 210, no. 110036, Nov. 2021.
    [56] L. Liu and L. Guanghui, “Acoustic tomography based on hybrid wave propagation model for tree decay detection”, Computers and Electronics in Agriculture, vol. 151, pp. 276 – 285, Aug. 2018.
    [57] H. Wang, X. Zhou, Q. Yang, J. Chen, C. Dong and L. Zhao, "A Reconstruction Method of Boiler Furnace Temperature Distribution Based on Acoustic Measurement”, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1 - 13, 2021.
    [58] R. Martín, D. J. Mochón , J. Jiménez, L. F. Verdeja , P.Rusek and N. Ayala, “Above Burden Temperature Data Probes Interpretation to Prevent Malfunction of Blast Furnaces ‐ Part 1: Intelligent Information Preprocessing”, Steel Research International, Vol. 80, pp 185-193, 2009.
    [59] Y. Dai, M. Konishi and J. Imai, “Temperature distribution control in blast furnace by RNN”, 3rd International Conference on Innovative Computing Information and Control, ICICIC, 2008.
    [60] X. Huaqing, C. Lifei, Y. Wei and W. Bingqian, “Temperature dependent thermal conductivity of a free-standing graphene nanoribbon”, Applied Physics Letters, Vol. 102, Issue 11, 2013.
    [61] Y. Yu, Q. Xiong, Q. Li, C. Wu, K. Wang, M. Ga and S.Liang, “A method for ultrasound thermal image distribution reconstruction”, Measurement Science Technology, vol. 30, pp 9, 2019.
    [62] H. Yan, Z. Ma and Y. G. Zhou, “Acoustic tomography system for online monitoring of temperature fields”, IET Science, Measurement and Technology, vol. 11, no. 5, pp 623-630, 2017.
    [63] M. Barth and A. Raabe, “Acoustic tomography imaging of temperature and flow fields in air”, Measurement Science Technology, vol. 22, pp 13, 2011
    [64] M. Bramanti, E. A. Salerno, A. Tonazzini, S. Pasini and A. Gray, “An acoustic pyrometer system for tomographic thermal imaging in power plant boilers”, IEEE Transactions on Instrumentation and Measurement, Vol. 45, No.1, 1996.
    [65] S. Liu, S. Liu, and T. Ren, “Acoustic tomography reconstruction method for the temperature distribution measurement”, IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 8, 2017.
    [66] J. Song, Y. Hong, M. Xin, G. Liu, “Tomography system for measurement of gas properties in combustion flow field”, Chinese Journal of Aeronautics, Vol. 30, pp 1697-1707, 2017.
    [67] S. Zhang, G. Shen, L. An, and Y. Niu, “Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computer tomography”, Applied Thermal Engineering, vol. 75, pp 958-966, 2015.
    [68] S. Y. Ren, J. Lei and Z. P. Jia, “Reconstruction method for temperature field measurement using ultrasound tomography”, Chemical Engineering Science, vol. 183, pp 177-189, 2018.
    [69] X. Shen, H. Chen, T. M. Shih, Q. Xiong and H. Zhang, “Construction of three dimensional temperature distribution using a network of ultrasonic transducers”, Nature Scientific Reports, 9, article number 12726, 2019.
    [70] R. J. Steriti and M. A. Fiddy, “Regularized image reconstruction using svd and a neural network method for matrix inversion”, IEEE Transactions on Signal Processing, vol.41, no. 10, 1993.
    [71] Y. Li, S. Liu, and S. H. Inaki, “Dynamic Reconstruction Algorithm of Three-Dimensional Temperature Field Measurement by Acoustic Tomography”, Sensors, vol. 17, no. 9, 2017.
    [72] H. Stark, J. Woods, I. Paul and R. Hingorani, "Direct Fourier reconstruction in computer tomography", IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 2, pp. 237 - 245, 1981.
    [73] G. S. Alberti, P. Campodonico, and M. Santacesaria, “Compressed Sensing Photoacoustic Tomography Reduces to Compressed Sensing for Undersampled Fourier Measurements”, SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 1039 – 1077, 2021.
    [74] X. Shen, Q. Xiong, X. Shi, K. Wang, S. Liang and M. Gao,“Ultrasonic temperature distribution reconstruction for circular area based on markov radial basis approximation and singular value decomposition”, Ultrasonics, vol. 62, pp. 174 - 185, 2015.
    [75] R. Jia, Q. Xiong and S. Liang, “Acoustic imaging for temperature distribution reconstruction”, AIP Advances,vol. 6, no. 125018, 2016.
    [76] R.Jia, Q. Xiong, G. Xu, K. Wang and S. Liang, “A method for two-dimensional temperature field distribution reconstruction”, Applied Thermal Engineering, vol. 111, pp. 961 - 967, 2017.
    [77] S. Liu, S. Liu, T. Ren, “Ultrasonic tomography based temperature distribution measurement method”, Measurement, vol. 94, pp. 671 - 679. 2016.
    [78] X. Shena, Q. Xiong, X. Shi, K. Wang, S. Liang, M. Gao, “Ultrasonic temperature distribution reconstruction for circular area based on Markov radial basis approximation and singular value decomposition”, Ultrasonics, vol. 62, pp. 174 - 185, 2015.
    [79] A. Ziemann, K. Arnold and A. Raabe, “Acoustic tomography in the atmospheric surface layer”, Annales Geophysica, vol.17, pp. 139 – 148, 1999.
    [80] A. Raabe,K. Arnold; A. Ziemann, “Horizontal Turbulent Fluxes of Sensible Heat and Horizontal Homogeneity in Micrometeorological Experiments”, Journal of atmospheric and Oceanic Technology, vol. 19, no. 8, pp. 1225 – 1230, 2002.
    [81] F.J. Breidt and N. J. Hsu, “Best mean square prediction for moving averages”, Statistica Sinica, vol. 15, pp. 427 - 446, 2005.
    [82] R. Jia and Q. Xiong, “Two-Dimensional Temperature Field Distribution Reconstruction Based on Least Square Method and Radial Basis Function Approximation”, Mathematical Problems in Engineering, article no. 1213605, pp. 7, 2017.
    [83] Y. Yu, Q. Xiong, Q. Li, C. Wu, K. Wang, M. Gao and S. Liang,“A method for ultrasound thermal image distribution reconstruction”, Measurement Science Technology, vol. 30, no. 9, pp. 9, 2019.
    [84] S. Liu, S. Liu and T. Ren, “Acoustic Tomography Reconstruction Method for the Temperature Distribution Measurement”, IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 8, pp. 1936 – 1945, 2017.
    [85] R. Jia, Q. Xiong and S. Liang“Acoustic imaging for temperature distribution reconstruction”, AIP Advances, vol. 6, no. 125018, 2016.
    [86] D. B. Lindell, G. Wetzstein, and V. Koltun, “Acoustic non-line-of-sight imaging”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6780 – 6789, 2019.
    [87] H. Liu, H. Xia, M. Zhuang, Z. Long, C. Liu, J. Cui, B. Xu, Q. Hu, and Q. H. Liu, “Reverse time migration of acoustic waves for imaging based defects detection for concrete and CFST structures”, Mechanical Systems and Signal Processing, vol. 117, pp. 210 – 220, 2019.
    [88] R. S. Gilmore, “Industrial ultrasonic imaging and microscopy”, Journal of Physics D: Applied Physics, vol. 29, no. 6, 1996.
    [89] M. S. Muha, A. A. Moulthrop, G. C. Kozlowski, and B. Hadimioglu, “Acoustic microscopy at 15.3 GHz in pressurized superfluid helium” , Applied Physics Letters, vol. 56, no. 1019, 1990.
    [90] N. G. Parker, P. V. Nelson, and M. J. W. Povey, “A versatile scanning acoustic platform”, Measurement Science and Technology, vol. 21, no. 045901, 2010.
    [91] F. Pérez-Cota, R. J. Smith, E. Moradi, L. Marques, K. F. Webb, and M. Clark, “High resolution 3D imaging of living cells with sub-optical wavelength phonons”, Scientific Reports, vol. 6, article no. 39326, 2016.
    [92] R. A. Lemons and C. F. Quate, “A scanning acoustic microscope” Proceedings of the IEEE Ultrasonics Symposium, pp. 18 – 21, USA, 1973.
    [93] P. D. Cowley, R. H. Bennett, A. R. Childs, and T. S. Murray, “Reflection on the first five years of South Africa’s Acoustic Tracking Array Platform (ATAP): status, challenges and opportunities”, African Journal of Marian Science, vol. 39, no. 4, pp. 363 – 372, 2017.
    [94] A. Hagelauer, G. Fattinger, C. C. W. Ruppel, M. Ueda, K. Y. Hashimoto and A. Tag, "Microwave Acoustic Wave Devices: Recent Advances on Architectures, Modeling, Materials, and Packaging", IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4548 - 4562, 2018.
    [95] R. Lucklum and P. Hauptmann, “Transduction mechanism of acoustic-wave based chemical and biochemical sensors”, Measurement Science and Technology, vol. 14, no. 11, 2003.
    [96] M. Barth and A. Raabe, “Acoustic tomographic imaging of temperature and flow fields in air”, Measurement Science and Technology, vol. 22, no. 3, 2011, Art. no. 035102.
    [97] S. N. Vecherin, V. E. Ostashev, and D. K. Wilson, “Assessment of systematic errors for acoustic travel-time tomography of the atmosphere,” The Journal of the Acoustical Society of America, vol. 134, no. 3, pp. 1802–1813, 2013.
    [98] T. Ma, Y. Liu, and C. Cao, “Neural networks for 3D temperature field reconstruction via acoustic signals”, Mechanical Systems and Signal Processing, vol. 126, pp. 392–406, 2019.
    [99] G. Liang, F. Dong, V. Kolehmainen, M. Vauhkonen, and S. Ren, “Non-stationary image reconstruction in ultrasonic transmission tomography using Kalman filter and dimension reduction”, IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021.
    [100] S. Liu, S. Liu, and T. Ren, “Acoustic tomography reconstruction method for the temperature distribution measurement”, IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 8, pp. 1936–1945, 2017.
    [101] S. Pal, F. S. Lin, C. C. Hsieh, Y. H. Liu, C. Y Lu, S. W. Du and C. H. Huang, “An acoustic hotspot tracking algorithm for highly centralized gad temperature distribution”, IEEE Transactions On Ultrasonics, Ferroelectrics, And Frequency Control, vol. 68, no. 4, pp. 1370–1379, 2021.
    [102] Y. S. Wang, H. Guo, T. P. Feng, J. Ju, and X. L. Wang, “Acoustic behavior prediction for low-frequency sound quality based on finite element method and artificial neural network”, Applied Acoustics, 122, 62-71, 2017.
    [103] J. Jeong, J. Lee, H. Sun, H. Park, S. Kim, and M. S. Bak, “Temperature field estimation of an axisymmetric laminar flame via time-of-arrival measurements of acoustic waves, and machine learning”, Experimental Thermal and Fluid Science, vol. 129, no. 110454, 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE