簡易檢索 / 詳目顯示

研究生: 何欣遠
Ho, Hsin-Yuna
論文名稱: 基於加速度與磁力量測應用至行人動作辨識之研究
Pedestrian Motion Recognition Based on Acceleration and Magnetic Field Measurements
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 隱藏式馬可夫模型行人動作辨識
外文關鍵詞: LPCC, HMM
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來,當微機電發展日益成熟,商業化的瓶頸逐步被克服後,微機電元件已被廣泛應用於一般工業、電子資訊、車用、生物醫療及數位家庭娛樂等領域。而現今普為人知的遊戲機,透過微機電運動感測器(3軸加速規)對動作的感測能力,將遊戲的玩法帶入全新的領域。而本論文旨在使用微機電型式之磁力計與加速規之硬體架構為基礎,以探討行人動作為主要目的,針對不同人及不同動作行為模式,如:站立、走路、爬樓梯、搭電梯等,蒐集磁力與加速度量測量,建立演算法則,進行訓練,找出不同動作對應之模型,用以判斷辨識行人目前的行為狀況,以期日後可應用於人體動作辨識、行人導航與醫療看護等相關領域。

    Recently, significant advances have been made in the field of MEMS(Micro Electro Mechanical System). MEMS devices have been applied widely in many fields, such as industrial automation, electronics vehicle, biomedical, digital home entertainments, and so on. In particular, a noted video game console has adopted MEMS motion sensors(triaxial accelerometer)to detect human motion and provide experiment in game play. In the thesis, a low-cost magnetometer/accelerometer is used to recognize pedestrian motions. The sensor data are collected and processed to classify different kinds of human activities. It is expected that the design approach can be applied in human activities recognition, pedestrian navigation, and medical care.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 4 1.4 論文架構 4 第二章 辨識系統架構介紹 6 2.1 基本辨識系統簡介 6 2.2 感測元件之硬體架構介紹 8 2.3 座標系統之定義與轉換 9 2.3.1 座標系統定義 9 2.3.2 座標系統轉換 10 2.4 辨識系統架構之建立 18 2.4.1 行人動作訓練系統 18 2.4.2 行人動作測試系統 18 第三章 訊號處理辨識理論 20 3.1 訊號切割 20 3.2 特徵參數之擷取 21 3.2.1 振幅、平均值與能量 21 3.2.2 變異量、標準差與平均絕對差 22 3.2.3 方均根與四分位間距 23 3.2.4 線性預測編碼與線性預測倒頻譜係數 24 3.3 資料分群之介紹 26 3.3.1 K-means clustering之介紹 27 3.3.2隱藏式馬可夫模型之介紹 28 第四章 行人動作辨識系統之建立與實驗結果 34 4.1 行人動作辨識系統之架構 34 4.1.1 行人動作訓練系統 34 4.1.2 行人動作測試系統 42 4.2 實驗規劃 48 4.2.1 靜態動作實驗 48 4.2.2 動態動作實驗 50 4.3.1 行人動作訓練 52 4.3.2 行人動作測試 57 第五章 結論與未來工作 61 5.1 結論 61 5.2 未來工作 62 參考文獻 63

    [1] L. Bao and S. S. Intille, “Activity Recognition from User-Annotated Acceleration Data,” Proceedings of the 2nd International Conference on Pervasive Computing and Communications, 2004, Lecture Notes in Computer Science, 2004.
    [2] F. Cavallo, A. M. Sabatini, V. Genovese, “A Step Toward GPS/INS Personal Navigation Systems: Real-time Assessment of Gait by Foot Inertial Sensing,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005
    [3] Y. P. Chen, J. Y. Yang, S. N. Liou, G. Y. Lee, and J. S. Wang, “Online Classifier Construction Algorithm for Human Motion Detection Using an Accelerometer,” Applied Mathematics and Computation, 2008.
    [4] W. Y. Chung, S. Bhardwaj, A. Punvar, D. S. Lee and R. Myllylae, “A Fusion Health Monitoring Using ECG and Accelerometer sensors for Elderly Persons at Home,” Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite Internationale, 2007.
    [5] A. W. Jamie, P. Lukowicz, G. Troster, and T. E. Starner, “Activity Recognition of Assembly Tasks Using Body-Worn Microphones and Accelerometers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006
    [6] D. U. Jeong, S. J. Kim and W. Y. Chung, “Classification of Posture and Movement Using a 3-axis Accelerometer,” International Conference on Convergence Information Technology, 2007.
    [7] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell and B. G. Celler, “Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring,” IEEE Transactions on Information Technology in Biomedicine, 2006
    [8] S. H. Lee, H. D. Park, S. Y. Hong, K. J. Lee and Y. H. Kim, “A Study on the Activity Classification Using a Triaxial Accelerometer,” Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, 2003.
    [9] M. J. Mathie, B.G. Celler, N.H. Lovell, and A.C.F. Coster, “Classification of Basic Daily Movements Using a Triaxial Accelerometer,” Medical and Biological Engineering and Computing, 2004.
    [10] M. Nadler, E. P. Smith., Pattern Recognition Engineering, New York, Wiley, 1993.
    [11] L. Ojeda, and J. Borenstein, “Personal Dead-reckoning System for GPS-denied Environments,” Proceedings of the 2007 IEEE International Workshop on Safety, Security and Rescue Robotics Rome, 2007.
    [12] A. Purwar, D. U. Jeong and W. Y. Chung, “Activity Monitoring from Real-Time Triaxial Accelerometer data using Sensor Network,” International Conference on Control, Automation and Systems, 2007.
    [13] L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Englewod Cliffs, N. J. :Prentice Hall, 1993.
    [14] K. Sagawa, Y. Satoh, and H. Inooka, “Non-Restricted Measurement of Walking Distance,” Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 2000.
    [15] S. H. Shin, C. G. Park, H. S. Hong and J. M. Lee, “MEMS-Based Personal Navigator Equipped on the User’s Body,” ION GNSS 18th International Technical Meeting of the Satellite Division, 2005.
    [16] S. H. Shin, C. G. Park, J. W. Kim, H. S. Hong and J. M. Lee, “Adaptive Step Length Estimation Algorithm Using Low-Cost MEMS Inertial Sensors,” IEEE Sensors Applications Symposium, 2007.
    [17] M. J. Sidi, Spacecraft Dynamics and Control, Cambridge University Press, 1997.
    [18] K. T. Song and Y. Q. Wang , “ Remote Activity Monitoring of the Elderly Using a Two-Axis Accelerometer ,” Proceedings of 2005 CACS Automatic Control Conference, 2005.
    [19] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Amsterdam, Academic Press, 2006.
    [20] S. Wang, J. Yang, N. Chen, X. Chen, and Q. Zhang, “Human Activity Recognition with User-Free Accelerometers in the Sensor Networks,” Proceedings of IEEE Int. Conf. Neural Networks and Brain, 2005
    [21] J. R. Wertz, Spacecraft Attitude Determination and Control, Springer, 1978.
    [22] X. Yun, E. R. Bachmann, H. Moore IV, and J. Calusdian, “Self-contained Position Tracking of Human Movement Using Small Inertial/Magnetic Sensor Modules,” IEEE International Conference on Robotics and Automation Roma, 2007.
    [23] AMI601 Specifications, Available:http://www.aichi-steel.co.jp/ENGLISH/
    [24] Apple iPhone, Available:http://www.apple.com/iphone/
    [25] HTC Touch, Available:http://www.htc.com/tw/
    [26] LIS3LV02DL, Available:http://www.st.com/stonline/
    [27] Nintendo Wii, Available:http://www.nintendo.com/wii
    [28] 莊智清,黃國興,電子導航,全華科技圖書股份有限公司,2001。
    [29] 陳明熒,PC 電腦語音辨認實作,旗標出版,1994。
    [30] 謝依蘭,語音訊號數位處理,松崗出版,1992。
    [31] 楊鎮光,Visual Basic與語音辨識 :讓電腦聽話,文魁資訊,2002。
    [32] 張智星,"資料分群與樣式辨認",網路線上課程,可由作者之網頁 http://www.cs.nthu.edu.tw/~jang連結到此線上課程。
    [33] 張智星,"音訊處理與辨識",網路線上課程,可由作者之網頁 http://www.cs.nthu.edu.tw/~jang連結到此線上課程。
    [34] 陳明豐,低軌道衛星姿態估測演算法,國立台灣大學電機工程學系碩士論文,2002。
    [35] 吳世驊,皮米級衛星姿態控制次系統之設計與實現,國立成功大學電機工程學系碩士論文,2006。
    [36] 林計德,結合GPS與磁力/加速度感測元件於導航之研究,國立成功大學電機工程學系碩士論文,2007。

    下載圖示 校內:2010-07-30公開
    校外:2013-07-30公開
    QR CODE