簡易檢索 / 詳目顯示

研究生: 潘娜愛蜜莉
Panapa, Emelipelesa Sam
論文名稱: 應用標準化降水指數SPI於吐瓦魯富納富提乾旱和氣旋事件之分析
Harnessing the Standardized Precipitation Index (SPI) for Drought and Cyclone-event analyses in Funafuti, Tuvalu.
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 153
中文關鍵詞: 富納富提島吐瓦魯標準化降水指數(SPI)熱帶氣旋(TC)長短期記憶(LSTM)乾旱
外文關鍵詞: Funafuti, Tuvalu, Standardized Precipitation Index (SPI), Tropical Cyclone (TC), Long Short-Term Memory (LSTM), Drought
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討吐瓦魯動態降水及其對乾旱管理的影響,研究重點為富納富提島。研究中使用橫跨72年的數據(1951年至2022年),分析降水指標,特別是在不同時間尺度之標準化降水指數(SPI)的變化。較短時間尺度的SPI 1和SPI 3可提供關於短期波動的即時觀察。對於依賴雨水的吐瓦魯來說,這類水資源的可利用性極為重要。相反地,較長時間尺度的SPI 12則提供了更廣泛的視野,有助於預測長期乾旱的影響。此外,本研究還探討了以日為基底的SPI與熱帶氣旋(TC)事件之間的關連,分析了2015至2018四年時間期。結果顯示較長的日基底時間尺度(少於一個月)與TC事件之間具有較強的相關性。研究並採用新進的數據分析技術,建構長短期記憶(LSTM)模型。在120個月的序列中,LSTM模型對乾旱預測顯示出很高的準確性,此結果有助於強化氣候災害的抵禦韌性。研究最後對先進分析技術整合於乾旱管理、社區能力建設以及與可持續發展目標相符的國家和全球政策提出建議,期能加強吐瓦魯對氣候變異的韌性,以保障人民和環境的福祉。

    This thesis investigates the dynamics of precipitation in Tuvalu and its implications for drought management, focusing on the island of Funafuti. Utilizing a dataset spanning 72 years (1951 – 2022), it examines precipitation indices, particularly the Standardized Precipitation Index (SPI), across various timescales. Shorter timescales such as SPI 1 and SPI 3 provide timely insights into short-term fluctuations crucial for water availability in rain-dependent Tuvalu. Conversely, longer timescales like SPI 12 offer a broader perspective, aiding in anticipating long-term drought impacts. Additionally, the study explores the relationship between daily SPI and Tropical Cyclone (TC) events, analyzing a four-year period (2015 – 2018). Stronger correlations with TC events are observed with longer daily timescales (less than a month). Advanced data analytics techniques, notably Long Short-Term Memory (LSTM) modeling, in the 120-month sequence demonstrate high accuracy in drought prediction, contributing to enhanced resilience against climate hazards. The thesis concludes by offering suggestions for further integration of advanced analytics into drought management, community capacity-building, and policy alignment with national and global sustainability goals are provided. These efforts aim to strengthen Tuvalu's resilience to climate variability, safeguarding the well-being of its population and environment.

    摘要 3 ABSTRACT 4 ACKNOWLEDGEMENT 5 LIST OF TABLES 11 LIST OF FIGURES 12 LIST OF ACRONYMS 15 CHAPTER 1 INTRODUCTION 16 1.1 Research Motivation 16 1.2 Research Objectives 17 1.3 Research Flow Chart 18 1.4 Literature Review 20 1.4.1 Standardized Precipitation Index (SPI) 20 1.4.2 Drought and Run Theory 23 1.4.3 Recall, Precision and Accuracy 27 1.4.4 Tropical Cyclone 27 1.4.5 Point Biserial Correlation 29 1.4.6 Long-Short Term Memory (LSTM) 30 CHAPTER 2 SITE DESCRIPTION 32 2.1 Tuvalu 32 2.2 Funafuti Island 33 2.3 Historical Precipitations, Droughts and Tropical Cyclone Events Data 37 2.4 Impacts of Drought and Tropical Cyclone 38 2.4.1 Impacts of Drought 38 2.4.2 Impacts of Tropical Cyclone 39 CHAPTER 3 METHODOLOGY 41 3.1 Dealing with Missing Data 41 3.2 Converting Daily Data into Monthly Data 43 3.3 Standardized Precipitation Index (SPI) Mathematical Background 44 3.3.1 Mathematical Procedure and Formula for Computation of SPI 44 3.3.2 Calculating SPI timescales (SPI 1, SPI 3, SPI 6, SPI 9 & SPI 12) 47 3.4 Goodness-of-Fit Test 50 3.5 Run Theory 52 3.6 Drought Duration, Severity, Intensity and Frequency 54 3.7 Accuracy, Precision and Recall 55 3.7.1 Confusion Matrix 56 3.7.2 Accuracy, Recall and Precision Formulas 57 3.8 Tropical Cyclones & Point Biserial Correlation 57 3.8.1 Point Biserial Correlation Formula 58 3.8.2 t-test for the Point Biserial Correlation 60 3.9 Long Term Short Memory (LSTM) 60 3.9.1 Explanations and Formulas for LSTM 61 3.9.2 LSTM Output, Input and Time Period 63 3.9.3 Root Mean Square Error (RMSE) Formula 64 3.9.4 Data Loading and Preprocessing Flow Chart 65 3.9.5 Model Evaluation and Prediction 67 CHAPTER 4 DATA ANALYSIS 68 4.1 SPI Droughts 68 4.2 Historical Drought Events 71 4.3 Goodness-of-Fit Test 74 4.4 Run Theory 74 4.5 Drought Duration, Severity & Intensity 76 4.6 Accuracy, Precision and Recall 77 4.7 Point Biserial Correlation 79 4.7.1 Measuring Linear Association 79 4.7.2 Daily SPI for Point Biserial Correlation 80 4.7.3 Monthly SPI-1 for Point Biserial Correlation 87 4.8 Long Short-Term Memory 88 4.8.1 Root Mean Square Error (RMSE) 88 4.8.2 LSTM Actual SPI and Predicted SPI 99 CHAPTER 5 DISCUSSION 103 5.1 Accuracy, Precision, Recall & Run Theory Results 104 5.2 Point Biserial Correlation 105 5.3 Long Short-Term Memory (LSTM) 106 5.3.1 24-Month Sequence 107 5.3.2 60-Month Sequence 108 5.3.3 120-Month Sequence 109 5.3.4 Best Sequence Performance 110 5.4 Implications of SPI with LSTM to Tuvalu 111 CHAPTER 6 CONCLUSION AND SUGGESTION 113 6.1 Conclusion 113 6.2 Suggestion 114 REFERENCES 116 APPENDICES 130 APPENDIX A 130 Dealing with Missing Data 130 APPENDIX B 131 APPENDIX C 138

    Absar, N., Uddin, N., Khandaker, M. U., & Ullah, H. (2021). The efficacy of deep learning based LSTM model in forecasting the outbreak of contagious diseases. Infectious Disease Modelling. Advance online publication. https://doi.org/10.1016/j.idm.2021.12.002

    Abu, A. A., & Şişman, E. (2023). Characteristics of Hydrological and Meteorological Drought Based on Intensity-Duration-Frequency (IDF) Curves. Water, 15, 3142. https://doi.org/10.3390/w15173142

    Aktürk, G., Zeybekoğlu, U., & Yıldız, O. (2022). Assessment of meteorological drought analysis in the Kizilirmak River Basin, Turkey. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-022-10119-0

    Alvarez, S. A. (2002). An exact analytical relation among recall, precision, and classification accuracy in information retrieval. Department of Computer Science, Boston College. 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.

    Andrade, C. (2019). The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives. Indian Journal of Psychological Medicine, 41(3), 210-215. https://doi.org/10.4103/IJPSYM.IJPSYM_193_19

    Antoniou, A. (2019). Groundwater investigations under Tuvalu Ridge to Reef Project. Pacific Community. Retrieved from https://www.linkedin.com/pulse/groundwater-investigations-tuvalu-andreas-antoniou

    Arra, A. A., & Şişman, E. (2023). Characteristics of Hydrological and Meteorological Drought Based on Intensity-Duration-Frequency (IDF) Curves. Water, 15, 3142. https://doi.org/10.3390/w15173142

    Asian Development Bank. (June 2020). Tuvalu: Preparing the Funafuti Water and Sanitation Project. Project Readiness Financing Report. (Project Number: 53417-001). Retrieved from https://www.adb.org/projects/53417-001/main

    Australian Broadcasting Corporation (ABC). (2011). Tuvalu uses desalination to combat water crisis [Broadcasting Report]. Retrieved from https://reliefweb.int/report/tuvalu/tuvalu-uses-desalination-combat-water-crisis

    Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Helm Smith, K., Wall, N., Fuchs, B., Crossman, N. D., & Overton, I. C. (2016). Drought indicators revisited: the need for a wider consideration of environment and society. WIREs Water, 3(4), 516-536. https://doi.org/10.1002/wat2.1154

    Belesova, K., Agabiirwe, C. N., Zou, M., Phalkey, R., & Wilkinson, P. (2019). Drought exposure as a risk factor for child undernutrition in low- and middle-income countries: A systematic review and assessment of empirical evidence. Environment International, 131, 104973. https://doi.org/10.1016/j.envint.2019.104973

    Bhatia, K., Baker, A., Yang, W., Vecchi, G., Knutson, T., Murakami, H., Kossin, J., Hodges, K., Dixon, K., Bronselaer, B., & Whitlock, C. (2022). A potential explanation for the global increase in tropical cyclone rapid intensification. Nature Communications, 13(1), 6626. https://doi.org/10.1038/s41467-022-34321-6

    Bolan, S., Padhye, L. P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., Amarasiri, D., Hou, D., Zhou, P., Biswal, B. K., Balasubramanian, R., Wang, H., Siddique, K. H. M., Rinklebe, J., Kirkham, M. B., & Bolan, N. (2024). Impacts of climate change on the fate of contaminants through extreme weather events. Science of the Total Environment, 909, 168388.

    Bonnett, D. G. (2019). Point-biserial correlation: Interval estimation, hypothesis testing, meta-analysis, and sample size determination. British Journal of Mathematical and Statistical Psychology. https://doi.org/10.1111/bmsp.12189.

    Buckley, R. C. (1985). Environmental survey of Funafuti Atoll. Griffith University. [ResearchGate].

    Burchfield, E., & Gilligan, J. (2016). Agricultural adaptation to drought in the Sri Lankan dry zone. Applied Geography, 77, 92-100. https://doi.org/10.1016/j.apgeog.2016.10.003

    Burka, A., Biazin, B., & Bewket, W. (2023). Drought characterization using different indices, theory of run and trend analysis in bilate river watershed, rift valley of Ethiopia. Frontiers in Environmental Science, 11, 1098113. https://doi.org/10.3389/fenvs.2023.1098113

    Cheval, S. (2015). The Standardized Precipitation Index – an overview. Retrieved from https://www.researchgate.net/publication/291747885

    Ding, Y., Yu, G., Tian, R., & Sun, Y. (2022). Application of a hybrid CEEMD-LSTM model based on the Standardized Precipitation Index for drought forecasting: The case of the Xinjiang Uygur Autonomous Region, China. Atmosphere, 13(9), 1504. https://doi.org/10.3390/atmos13091504

    Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., & Zolina, O. (2021). Water Cycle Changes. In V. Masson-Delmotte, A. Zhai, S. L. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1055-1210). Cambridge University Press.

    Dunn, G. E. (1951). Tropical Cyclones. In T. F. Malone (Ed.), Compendium of Meteorology (pp. 1047-1056). American Meteorological Society. https://doi.org/10.1007/978-1-940033-70-9_72

    Edwards, D. C., & McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report 97–2. Department of Atmospheric Science, Colorado State University.

    Food and Agriculture Organization (FAO). (2020). The State of Food and Agriculture 2020: Overcoming water challenges in agriculture. Rome.

    Government of Tuvalu. (2015). Second National Communication of Tuvalu to the United Nations Framework Convention on Climate Change [Government report].

    Gupta, S. D. (1960). Point biserial correlation coefficient and its generalization. Psychometrika, 25, 393–408. https://doi.org/10.1007/BF02289756

    Guttman, N. B. (1994). On the Sensitivity of Sample L Moments to Sample Size. J. Clim. 7:1026-1029

    Guttman, N. B. (1998). Comparing the Palmer Drought Index and the Standardized Precipitation Index. Journal of the American Water Resources Association, 34(1).

    Guttman, N. B. (1999). Accepting the Standardized Precipitation Index: A Calculation Algorithm. Journal of the American Water Resources Association, 35(2).

    Hasan, N. A., Dongkai, Y., & Al-Shibli, F. (2023). SPI and SPEI drought assessment and prediction using TBATS and ARIMA models, Jordan. Water, 15, 3598. https://doi.org/10.3390/w15203598

    Hayes, J. M. (2000). Revisiting the SPI: Clarifying the Process. Drought Network News (1994-2001), 18. Retrieved from https://digitalcommons.unl.edu/droughtnetnews18

    Heim Jr., R. R. (2002). A review of twentieth-century drought indices used in the United States. American Meteorological Society.

    Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & Parasa, S. (2022). On evaluation metrics for medical applications of artificial intelligence. Scientific Reports, 12, 5979. https://doi.org/10.1038/s41598-022-08882-7

    Hoeke, R. K., Damlamian, H., Aucan, J. & Wandres, M. (2021). Severe Flooding in the Atoll Nations of Tuvalu and Kiribati Triggered by a Distant Tropical Cyclone Pam. Front. Mar. Sci. 7:539646. doi: 10.3389/fmars.2020.539646

    Huang, G. (2021). Missing data filling method based on linear interpolation and lightgbm. Journal of Physics: Conference Series, 1754, 012187. https://doi.org/10.1088/1742-6596/1754/1/012187

    Iese, V., Kiem, A. S., Mariner, A., Malsale, P., Tofaeono, T., Kirono, D. G. C., Round, V., Heady, C., Tigona, R., Veisa, F., Posanau, K., Aiono, F., Haruhiru, A., Daphne, A., Vainikolo, V., & Iona, N. (2021). Historical and future drought impacts in the Pacific islands and atolls. Climatic Change, 166, 19. https://doi.org/10.1007/s10584-021-03112-1

    International Federation of Red Cross (IFRC) and Red Crescent Societies. (2021). Emergency Plan of Action (EPoA) Tuvalu [Report]. Impending Drought. Retrieved from https://reliefweb.int/report/tuvalu/tuvalu-impending-drought-emergency-plan-action-epoa-dref-operation-n-mdrtv002

    Ji, H., Lou, Y., Cheng, S., Xie, Z., & Zhu, L. (2022). An Advanced Long Short-Term Memory (LSTM) Neural Network Method for Predicting Rate of Penetration (ROP). ACS Omega, 8(1), 934-945. https://doi.org/10.1021/acsomega.2c06308

    Juba, B., & Le, H. S. (2019). Precision-Recall versus Accuracy and the Role of Large Data Sets. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 4039-4048. https://doi.org/10.1609/aaai.v33i01.33014039

    Katea, T. (2015). TUVALU Meteorological Service (TMS) Country Report: Reporting on National Priority Actions of the Pacific Islands Meteorological Strategy (PIMS) 2012-2021. Tuvalu Meteorological Service.

    Kench, P. S., Ford, M. R., & Owen, S. D. (2018). Patterns of island change and persistence offer alternate adaptation pathways for atoll nations. Nature Communications, 9, 605. https://doi.org/10.1038/s41467-018-02954-1

    Khadr, M., Morgenschweis, G., & Schlenkhoff, A. (2009). Analysis of Meteorological Drought in the Ruhr Basin by Using the Standardized Precipitation Index. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 3(9). World Academy of Science, Engineering and Technology.

    Kim, Y. -H. (2017). Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restorative Dentistry & Endodontics, 42(2), 152–155. doi: 10.5395/rde.2017.42.2.152

    Komuscu, A. U. (1999). Using the SPI to Analyze Spatial and Temporal Patterns of Drought in Turkey. Drought Network News (1994-2001). DigitalCommons@University of Nebraska - Lincoln, Drought -- National Drought Mitigation Center.

    Kornbrot, D. (2014). Point Biserial Correlation. Wiley StatsRef: Statistics Reference Online.

    Kwak, J., Kim, Y. S., Lee, J. S., & Kim, H. S. (2012). Drought severity-duration-frequency analysis of hydrological drought based on copula theory. Presented at Hydrology Days 2012.

    Kumar, M. N., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications, 16(3), 381–389. https://doi.org/10.1002/met.136

    Kumar, J., Goomer, R., & Singh, A. K. (2018). Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model for Cloud Datacenters. 6th International Conference on Smart Computing and Communications, ICSCC 2017, 7-8 December 2017, Kurukshetra, India.

    Lau, Y.-Y., Yip, T.-L., Dulebenets, M. A., Tang, Y.-M., & Kawasaki, T. (2022). A review of historical changes of tropical and extra-tropical cyclones: A comparative analysis of the United States, Europe, and Asia. International Journal of Environmental Research and Public Health, 19, 4499. https://doi.org/10.3390/ijerph19084499

    Lepot, M., Aubin, J.-B., & Clemens, F. H. L. R. (2017). Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water, Review.

    Lin, T. C., Hogan, J. A., & Chang, C. T. (2020). Tropical cyclone ecology: A scale-link perspective. Trends in Ecology & Evolution, 35(7). https://doi.org/10.1016/j.tree.2020.02.012

    Lindemann, B., Müller, T., Vietz, H., Jazdi, N., & Wyrich, M. (2021). A survey on long short-term memory networks for time series prediction. In 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘20. Institute of Industrial Automation and Software Engineering, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.

    Liu, C., Yang, C., Yang, Q., & Wang, J. (2021). Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Scientific Reports, 11(1), 1280. https://doi.org/10.1038/s41598-020-80527-3

    Luck, S. (2020). Nonoverlap proportion and the representation of point-biserial variation. PLoS One, 15(12), e0244517. https://doi.org/10.1371/journal.pone.0244517

    Malakar, S., Goswami, S., Ganguli, B., Chakrabarti, A., Sen Roy, S., Boopathi, K., & Rangaraj, A. G. (2021). Designing a long short-term network for short-term forecasting of global horizontal irradiance. SN Applied Sciences, 3(477). https://doi.org/10.1007/s42452-021-04421-x

    McCubbin, S. G., Pearce, T., Ford, J. D., & Smit, B. (2017). Social-ecological change and implications for food security in Funafuti, Tuvalu. Ecology and Society, 22(1), 53. https://doi.org/10.5751/ES-09129-220153

    McHugh, M. L. (2013). The Chi-square test of independence. Biochemia Medica, 23(2), 143–149. https://doi.org/10.11613/BM.2013.018

    McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Presented at the Eighth Conference on Applied Climatology, Anaheim, California. Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.

    Microsoft. (2016). Excel. Retrieved from https://support.microsoft.com/en-us/office/forecast-and-forecast-linear-functions-50ca49c9-7b40-4892-94e4-7ad38bbeda99 & https://www.ablebits.com/office-addins-blog/excel-forecast-function-formula-examples/#FORECAST.LINEAR-function

    Moore, D. S., Notz, W. I., & Fligner, M. A. (2013). The Basic Practice of Statistics (6th ed.). New York: W. H. Freeman and Company.

    Moyé, L. A., Kapadia, A. S., Cech, I. M., & Hardy, R. J. (1988). The theory of runs with applications to drought prediction. Journal of Hydrology, 103, 127-137. Elsevier Science Publishers B.V., Amsterdam.

    Nadler, S. S., & Kros, J. (2007). Forecasting with Excel: Suggestions for Managers. Retrieved from ResearchGate: https://www.researchgate.net/publication/27826995

    Niehoff, E. (2023). Tuvalu Rising Against the Tide: Sovereignty through the Loss and Damage Fund? Environmental Policy Group (ENP-80436). Wageningen University & Research.

    Ohde, S. (2011). Funafuti Atoll. In Encyclopedia of Earth Sciences Series (pp. 446-449). DOI: 10.1007/978-90-481-2639-2_83

    Paeniu, L., Holland, E., Miller, C., & Anderson, G. (2017). Rainfall Trends Frequency and La Niña in Tuvalu: A Small Equatorial Island State in the Pacific Ocean. Department of Climate Change, University of the South Pacific (USP), Laucala campus, Suva, Fiji. Journal of Environmental & Analytical Toxicology. DOI: 10.417/2161-0525.1000501

    Sak, H., Senior, A., & Beaufays, F. (2014). Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. Google, USA. [Online].

    Secretariat of the Pacific Regional Environment Programme (SPREP). (2022). Tuvalu State of Environment Report [Government Report]. Retrieved from https://tuvalu-data.sprep.org/system/files/211110-Tuvalu-State-of-Environment-report%20Final%20Interactive.pdf

    Shah, R., Bharadiya, N., & Manekar, V. (2015). Drought Index Computation Using Standardized Precipitation Index (SPI) Method for Surat District, Gujarat. Aquatic Procedia, 4, 1243–1249. doi: 10.1016/j.aqpro.2015.02.162

    Shultz, M. J., Shepherd, M. J., Bagrodia, R., & Espinel, Z. (2015). Tropical cyclones in a year of rising global temperatures and a strengthening El Niño. Disaster Health, 2(3-4). https://doi.org/10.1080/21665044.2014.1111722

    Sinclair P, Atumurirava F, Samuela, J. (2012). Rapid drought assessment Tuvalu 13 October - 8 November 2011: SOPAC technical report (PR38). Funafuti, Tuvalu.

    South Pacific Applied Geoscience Commission (SOPAC). (1993). Country Profile – Tuvalu. Retrieved from https://library.sprep.org/sites/default/files/2021-02/country-profile-tuvalu.pdf

    Sugianto, S., Deli, A., Miswar, E., Rusdi, M., Irham, M. (2022). The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya. Land 2022, 11, 1271. https://doi.org/ 10.3390/land11081271

    Sun, J., Bi, S., Bashir, B., Ge, Z., Wu, K., Alsalman, A., Ayugi, B. O., & Alsafadi, K. (2023). Historical trends and characteristics of meteorological drought based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the past 70 years in China (1951–2020). Sustainability, 15(14), 10875. https://doi.org/10.3390/su151410875

    Sustainable and Integrated Water and Sanitation Policy 2012-2021. (2013). Published by SPC- Applied Geoscience and Technology Division (SOPAC). Suva, Fiji: STAR Printery Ltd. Retrieved from www.sopac.org

    Taherdoost, H. (2023). Deep Learning and Neural Networks: Decision-Making Implications. Symmetry, 15(9), 1723. https://doi.org/10.3390/sym15091723

    Tate, E. L., & Gustard, A. (2000). Drought Definition: A Hydrological Perspective. In J. V. Vogt & F. Somma (Eds.), Drought and Drought Mitigation in Europe (pp. 23-48). Kluwer Academic Publishers.

    Tekinene, M. (2014). An assessment of the impacts of climate change on cultivated pulaka (Cyrtosperma chamissonis) in Tuvalu. University of the South Pacific, Fiji.

    Thom, H. (1966). Some methods of climatological analysis. WMO Technical Note Number 81, Secretariat of the World Meteorological Organization, Geneva.

    Tui, S., & Fakhruddin, B. (2022). Food for thought. Climate change risk food (in)security in Tuvalu. Progress in Disaster Science, 1.

    Tuvalu - Country Risk Profile (English). (2011). Pacific Catastrophe Risk Assessment and Financing Initiative. Washington, D. C.: World Bank Group. Volume 2. Retrieved from http://documents.worldbank.org/curated/en/511991468183560800/Tuvalu-country-risk-profile

    Tuvalu Department of Lands and Survey. (2019). Lidar Data [Excel Sheet consisting of Tuvalu countries landmass and population]. Location: Funafuti.

    Tuvalu. (2021). TE KETE Tuvalu: National Strategy for Sustainable Development 2021-2030. National Outcome 4, Key strategic Action 1.4.4. National Outcome 5, Key Strategic Actions; 1.5.2 & 1.5.3.

    United Nations Development Program (UNDP). (2021). Funafuti Detailed Design Report. Tuvalu Coastal Adaptation Project. (Report No: P19012_DetailedDesign_FUN_R1.00). Retrieved from https://www.adaptation-undp.org/resources/reports-and-publications-country-teams/detailed-design-report-tcap-funafuti-island-march

    United Nations Development Programme (UNDP). (2023). Sustainable Development Report 2023: Implementing the SDG Stimulus - Includes the SDG Index and Dashboards.

    United Nations Office for Disaster Risk Reduction (UNDRR). (2022). Disaster risk reduction in Tuvalu: Status Report 2022. Retrieved from https://www.undrr.org/publication/disaster-risk-reduction-tuvalu-status-report-2022

    Vernaccini, L., Groeve, D. T., & Gadenz, S. (2007). Humanitarian Impact of Tropical Cyclones. JRC Scientific and Technical Reports.

    Villegas-Ch, W., & García-Ortiz, J. (2023). A Long Short-Term Memory-Based Prototype Model for Drought Prediction. Electronics, 12, 3956. https://doi.org/10.3390/electronics12183956

    Walsh, K.J.E., Camargo, S.J., Knutson, T.R., Kossin, J., Lee, T.-C., Murakami, H., & Patricola, C. (2019). Tropical Cyclones and Climate Change. Tropical Cyclone Research and Review, 8(4).

    Wandres, M., Espejo, A., Sovea, T., Tetoa, S., Malologa, F., Webb, A., Lewis, J., Lee, G., & Damlamian, H. (2024). A National-Scale Coastal Flood Hazard Assessment for the Atoll Nation of Tuvalu. Earth's Future, 12(4), e2023EF003924. https://doi.org/10.1029/2023EF003924

    Wang, C., Wang, X., & Hardeberg, J. Y. (2014). A Linear Interpolation Algorithm for Spectral Filter Array Demosaicking. In Abderrahim Elmoataz, Olivier Lezoray, Fathallah Nouboud, & Driss Mammass (Eds.), Image and Signal Processing: Proceedings of the 6th International Conference, ICISP 2014, Cherbourg, France, June 30 – July 2, 2014 (pp. 151–160). LNCS 8509. Springer.

    Wang, R., Zhao, C., Zhang, J., Dong, Z., Zhang, Y., Liu, H., Li, X., & Chen, X. (2019). Bivariate copula function-based spatial–temporal characteristics analysis of drought in Anhui Province, China. Meteorology and Atmospheric Physics, 131(5). https://doi.org/10.1007/s00703-018-0640-3

    Wang, Q., Zhang, R., Qi, J., Zeng, J., Wu, J., Shui, W., Wu, X., & Li, J. (2022). An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Scientific Data, 9(1), 124. [https://doi.org/10.1038/s41597-022-01201-z

    Wilhite, D. A., & Glantz, M. H. (1985). Understanding Drought Phenomenon: The Role of Definitions. Drought Mitigation Center Faculty Publications, 20.
    World Bank Group. (2021). Climate Risk Country Profile - Tuvalu [Report]. Retrieved from https://reliefweb.int/report/tuvalu/climate-risk-country-profile-tuvalu

    World Meteorological Organization (WMO). (2012). Standardized Precipitation Index User Guide. Weather-Climate-Water. WMO-No. 1090.

    Wu, R., Zhang, J., Bao, Y., & Guo, E. (2019). Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China. Sustainability, 11, 6032. https://doi.org/10.3390/su11216032

    Yevjevich, V. (1967). An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts [Hydrology Paper No. 23]. Colorado State University, Fort Collins, Colorado.

    Zhang, Y., Wang, P., Chen, Y., Yang, J., Wu, D., Ma, Y., Huo, Z., & Liu, S. (2023). The optimal time-scale of Standardized Precipitation Index for early identifying summer maize drought in the Huang-Huai-Hai region, China. Journal of Hydrology: Regional Studies, 46, 101350.

    Zheng, C., Tao, Y., Zhang, J., Xun, L., Li, T., & Yan, Q. (2024). TISE-LSTM: A LSTM model for precipitation nowcasting with temporal interactions and spatial extract blocks. Neurocomputing. Advance online publication. https://doi.org/10.1016/j.neucom.2024.127700

    下載圖示 校內:2025-06-28公開
    校外:2025-06-28公開
    QR CODE