| 研究生: |
王麒豪 Wang, Chi-Hao |
|---|---|
| 論文名稱: |
應用四線圈式多單元矩陣型結構於無線電能傳輸系統之研究 Study on Wireless Power Transfer System with Four-Coil Multi-Element Matrix Structure |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 無線電能傳輸 、四線圈式共振結構 、多單元矩陣型結構 |
| 外文關鍵詞: | Wireless Power Transfer, Four-Coil Resonator Structure, Multi-Element Matrix Type |
| 相關次數: | 點閱:101 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在針對電動車無線充電平台提出具較高錯位容忍度與高效率之多單元矩陣型耦合結構。文中首先對於常見之耦合結構進行討論與模擬分析,其特點係以多單元方式進行矩陣型排列之耦合結構,相較於傳統線圈提升整個平面磁場發射之均勻度,同時利用四線圈式磁共振架構,利用具高品質因數之共振線圈進行電能傳輸,提升以往充電平台式感應耦合結構於無線電能傳輸系統間距較短之缺點。應用有限元素分析方法之電磁場模擬軟體模擬耦合結構,並針對不同線圈配置進行討論與分析,最後依據分析結果設計多單元矩陣式結構之共振線圈。系統利用微控制器控制全橋變流器操作頻率,適時追蹤因參數變動導致諧振頻率偏移之現象,以達頻率追蹤之效。最後,實驗結果顯示間距於18公分時可得最大效率為45%,而最大功率達209.9W。
This thesis aims to study wireless power transfer system with four-coil multi-element matrix structure in order to enhance the efficiency on a certain size area. First, difference kinds of common coupling structure are discussed and simulated. Multi-element matrix structure are applied in four-coil wireless power transfer technology and transfer power more effectively by high quality factor. Furthermore, four-coil resonance coupled structure can improve the drawback of the general inductive coupled charging platform in the short distance of the wireless power transmission system. 3-D finite-element simulation software is used to analysis different sets of structure. Then according to the result of simulation to design multi-element matrix resonator structure. The system achieves resonant frequency tracking mechanism by compare the value of voltage on capacitance in the feeding coil. Finally, experimental results show that the highest system efficiency is about to 45% at power transfer distance is 18 cm and the maximum output power is 209.9W.
[1]T. Yasuda, I. Norigoe, S. Abe, and Y. Kaneko, “Contactless charging system,” in Proc. IEEE INTELEC’11, 2011, pp. 1-7.
[2]A. Kamineni, G. A. Covic, and J. T. Boys, “Analysis of coplanar intermediate coil structures in inductive power transfer systems,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6141-6154, Nov. 2015.
[3]H. Y. Shen, J. Y. Lee, and T. W. Chang, “Study of contactless inductive charging platform with core array structure for portable products,” in Proc. IEEE Int. Conf. Consumer Electronics, Communications and Networks, 2011, pp. 756-759.
[4]J. Y. Lee, H. Y. Shen, and T. L. Wan, “Contactless inductive charging system with hysteresis loop control for small-sized household electrical applications,” in Proc. IEEE APEC, 2012, pp. 2172-2178.
[5]J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, 2008.
[6]S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[7]A. Zaheer, M. Budhia, D. Kacprzak, and G. A. Covic, “Magnetic design of a 300 W under-floor contactless power transfer system,” in Proc. IEEE IECON’11, 2011, pp. 1408-1413.
[8]J. A. Taylor, Z. N. Low, J. Casanova, and J. Lin, “A wireless power station for laptop computers,” in Proc. IEEE Radio and Wireless Symposium, 2010, pp. 625-628.
[9]T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE ICCE, 2011,pp. 11-12.
[10]X. Liu and S. Y. R. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron. vol. 22, no. 6, pp. 2202-2210, Nov. 2007.
[11]W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
[12]A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact-less power transmission system for the high-speed train,” in Proc. IEEE PESC’07, 2007, pp. 2779-2784.
[13]S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC’08, 2008, pp. 4320-4325.
[14]Y. D. Ko and Y. J. Jang, “The optimal system design of the online electric vehicle utilizing wireless power transmission technology,” IEEE Trans. Intel. Transp. Syst., vol. 14, no. 3, pp. 1255-1265, Sep. 2013.
[15]S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE Trans. Ind. Appl., vol. 3, no. 1, pp. 18-36, Mar. 2015.
[16]T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE OCEANS’04, 2004, vol. 4, pp. 2341-2345.
[17]J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Optimizing sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC’95, pp. 245-251.
[18]賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
[19]D. V. Wageningen and T. Staring, “The Qi wireless power standard,” in Proc. Int. Conf. Power Electronics and Motion Control, 2010, pp. 25-32.
[20]N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE j-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, vol. 2, pp. 841-847.
[21]J. G. Hayes, “Battery charging systems for electric vehicles,” in Proc. IEEE Colloq. Electric Vehicles-A Technology Roadmap for the Future(Digest No. 1998/262), 1998, pp. 4/1-4/8.
[22]A. S. Masoum, S. Deilami, P. S. Moses, and A. Abu-Siada, “Impacts of battery charging rates of plug-in electric vehicle on smart grid distribution system,” in Proc. IEEE Eur. Conf. Innovative Smart Grid Technologies, 2010, pp. 1-6.
[23]J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Tran. Ind. Appl., vol. 35, pp. 884-895, Jul. 1999.
[24]Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. Int. Conf. Power Electronics, 2010, pp. 2931-2934.
[25]U. K. Madawala and D. J. Thrimawithana, “A two-way inductive power interface for single loads,” in Proc. Int. Conf. Industrial Technology, 2010, pp. 673-678.
[26]Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicle,” in Proc. Int. Conf. Power Electronics, 2010, pp. 807-813.
[27]D. Marioli, E. Sardini, M. Serpelloni, and A. Taroni, “Contactless transmission of measurement information between sensor and conditioning electronics,” IEEE Trans. Instrums. Meas., vol. 57, no. 2, pp. 303-308, Feb. 2008.
[28]S. Y. Ahn, and J. H. Kim, “Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle,” in Proc. Eur. Conf. Antennas and Propagation, 2011, pp. 3979-3982.
[29]A. Kur, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, Jul. 2007.
[30]R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficiency weakly-radiative wireless energy transfer: An EIT-like approach,” Anm. Phys., vol. 324, no. 8, pp. 1783-1795, Aug. 2009.
[31]A. Karalis, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple device,” Appl. Phys. Lett., vol. 96, no. 4, p. 044102, Jan. 2010.
[32]W. Bingnan, H. T. Koon, N. Tamotsu, Y. William, B. John, and Z. Jinyun, “Wireless power transfer with metamaterials,” in Proc. IEEE EUCAP’11, 2011, pp. 3905-3908.
[33]http://news.bbc.co.uk/2/hi/in_pictures/7129507.stm
[34]http://www.intel.com/pressroom/kits/innovation/survey/
[35]C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. Int. Conf. Power System Technology, 2000, pp. 1053-1058.
[36]Y. Zhang, Z. Zhao, and T. Lu, “Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 184-190, Mar. 2015.
[37]T. Duong and J. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[38]Z. Dang, Y. Cao, and J. A. Abu, “Reconfigurable magnetic resonance-coupled wireless power transfer system,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6057-6069, Nov. 2015.
[39]Y. D. Tak, J. M. Park, and S. W. Nam, “Mode-based analysis of resonant characteristics for near-field coupled small antennas,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1238-1241, 2009.
[40]T. Imura and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, Oct. 2011.
[41]C. T. Rim, J. Huh, S. W. Lee, W. Y. Lee, and G. H. Cho, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Tran. Power. Electron., vol. 26, no. 12, pp. 3666-3679, Dec. 2011.
[42]J. H. Bae. (2012, Oct.). Korea’s home-grown EV wireless charging system to get off the ground. Korea. [Online]. Available: http://itersnews.com/?p=15020.
[43]H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585-595, Aug. 2012.
[44]H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A 90 percent efficient 5kW inductive charger for EVs,” in Proc. IEEE ECCE, 2012, pp. 275-282.
[45]賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
[46]蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯繞至式編織型陣列區塊感應耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[47]李昆蔚,電動載具用編織型非接觸式感應充電平台之研製,國立成功大學電機工程學系碩士論文,2011年。
[48]劉杰諠,電動載具充電用非接觸式編織型感應饋電系統之研製,國立成功大學電機工程學系碩士論文,2012年。
[49]趙善任,應用新型三相感應耦合結構於非接觸式電動載具充電平台之研究,國立成功大學電機工程學系碩士論文,2013年。
[50]賴景明,應用四線圈多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014。
[51]陳陽,四線圈式多環同軸型無線電能傳輸系統之匹配阻抗特性研究,國立成功大學電機工程學系碩士論文,2015。
[52]林奕維,應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2016。
[53]B. L. Cannon, J. F. Hoburg, D. D. Stancil and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," in IEEE Transactions on Power Electronics, vol. 24, no. 7, pp. 1819-1825, July 2009.
[54]T. Imura and Y. Hori, "Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula," in IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4746-4752, Oct. 2011.
[55]P. Si, A. P. Hu, S. Malpas and D. Budgett, "A frequency control method for regulating wireless power to implantable devices," in IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 1, pp. 22-29, March 2008.
[56]D. Ahn and S. Hong, "A study on magnetic field repeater in wireless power transfer," in IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 360-371, Jan. 2013.
[57]J.R. Piece, "Coupling of modes of propagation, "J. Appl. Phys., vol. 25, pp. 179-183, 1954.
[58]M. Kiani and M. Ghovanloo, "The circuit theory behind Coupled-Mode magnetic resonance based wireless power transmission," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 9, pp. 2065-2074, Sept. 2012.
[59]Karalis A, Joannopoulos J. D. and Soljacic M., "Efficient wireless non-radiative mid range energy transfer, " Annals of Physics, 2008, 323: 34-48.
[60]A. Desmoort, Z. De Gréve, P. Dular, C. Geuzaine and O. Deblecker, "Surface impedance boundary condition with circuit coupling for the 3-D finite-element modeling of wireless power transfer," in IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017.
[61]E. Bou-Balust, A. P. Hu and E. Alarcon, "Scalability analysis of SIMO non-radiative resonant wireless power transfer systems based on circuit models," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 10, pp. 2574-2583, Oct. 2015.
[62]J. Bito, S. Jeong and M. M. Tentzeris, "A novel heuristic passive and active matching circuit design method for wireless power transfer to moving objects," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 4, pp. 1094-1102, April 2017.
[63]K. Woronowicz, A. Safaee and T. R. Dickson, "Single-Phase zero reactive power wireless power transfer topologies based on boucherot bridge circuit concept," in Canadian Journal of Electrical and Computer Engineering, vol. 38, no. 4, pp. 323-337, Fall 2015.
[64]D. Ahn and S. Hong, "A study on magnetic field repeater in wireless power transfer," in IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 360-371, Jan. 2013.
[65]D. Ahn and S. C. Hong, “A Study on magnetic field repeater in wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 360-371, Jan. 2013.
[66]S. C. Moon and G. W. Moon, “Wireless power transfer system with an asymmetric 4-coil resonator for electric vehicle battery chargers,” in Proc. IEEE APEC, 2015, pp. 15-19.
[67]F. Zhang, S. A. Hackworth, W. Fu, C. Li, Z. Mao, and M. Sun, “Relay effect of wireless power transfer using strongly coupled magnetic resonances,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1478-1481, May 2011.
[68]X. Nan and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE Conf. Annual Power Electronics Specialist, 2003, pp. 853-860.
[69]Y. M. Zhang, Z. M. Zhao, and K. N. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436-2445, Dec. 2013.
[70]R. Huang, B. Zhang, D. Qiu, and Y. Zhang, “Frequency splitting phenomena of magnetic resonant coupling wireless power transfer,” IEEE Trans. Magn., vol. 50. no. 11, pp. 1-4, Nov. 2014.
[71]Y. L. Lyu, F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, and D. Erni, “A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6097-6107, Nov. 2015.
[72]UCC3895 Data sheet, Texas Instruments Inc., 2013.
[73]IR2110 Data sheet, International Rectifier Inc., 2013.