| 研究生: |
呂心惟 Lu, Hsin-Wei |
|---|---|
| 論文名稱: |
超薄陽極緩衝層與不同發光層製作於有機發光二極體之探討 Investigation of the effects of Ultra-Thin Anode Buffer Layer and Emission Layer on Organic Light-Emitting Diodes |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 陽極緩衝層 、有機發光二極體 |
| 外文關鍵詞: | anode buffer layers, OLEDs |
| 相關次數: | 點閱:59 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體近年來備受關注應用於固態照明、平面顯示器...等,相較於LCD和LED,其具有低操作電壓、廣視角、高對比、輕薄、高應答速度、全彩、可撓式以及成本低等優點。因此,許多研究探討改善其元件結構以及了解其操作機制。本研究利用增加載子注入效率以及使用不同元件結構調整載子的特性來改進整體元件之效率。
首先利用各種不同濃度和厚度的摻雜金屬氧化物和稀土氟化物之超薄緩衝層熱蒸鍍於ITO基板上並利用紫外光臭氧處理,藉此來探討其對於元件載子注入特性的影響。當緩衝層濃度和厚度達最佳化時,元件的驅動電壓降低、亮度和電流效率增加且同時可消除共振穿隧效應。利用X射線和紫外線光電子光譜儀來測定其表面能量化來研究其接面特性以及功函數;利用接觸角量測表面薄膜,計算其表面能和表面極性;利用原子力顯示器量測表面粗糙度;利用阻抗分析量測出電容及電導,接著計算出串聯電阻。由以上的量測結果可以知道加入一層紫外光臭氧處理過之緩衝層可以大幅提升元件之表現。
接著我們利用不同緩衝層的最佳參數製作於熱活化型延遲螢光(TADF) OLEDs,由於發光層的不同,其中一種為單一發光層,另一種為主客體發光層,因此我們探討其緩衝層對不同OLEDs造成的影響和結果。
Organic light-emitting diodes (OLEDs) have attracted much attention for application in solid-state lighting and flat-panel displays. In contrast to liquid-crystal displays (LCDs) and light-emitting diodes (LEDs), OLEDs have advantages such as low-voltage operation, wide viewing angles, high contrast, lower weigh, fast response, full color, flexibility, and low cost. Therefore, many researches were discussed to improve performance and to understand the operating mechanisms. In this thesis, we focus on improving the device performance by modifying anode and inserting anode buffer layers, and applications on WOLEDs and TADF OLEDs.
At first part, we used various concentrations and thicknesses anode buffer layers of the metal-doped metal oxide and rare earth fluoride deposited on the ITO substrates and then subjected to the UV-ozone treatment, and to discuss the effect on the hole injection properties of OLEDs. The optimal concentration and thickness of anode buffer layer which the performance such as turn-on voltage, luminance and current efficiency were significantly improved. X-ray photoelectron spectroscopy and Ultraviolet photoelectron spectrometer were measured binding energy spectra of molecules and work function, respectively. Contact angle measurement was measured the surface energy and polarity; AFM was measured the surface roughness; admittance spectroscopy measurement was measured the capacitance and conductance, then to calculate the sheet resistance. Above measurements results, we can know inserting anode buffer layer after the UV-ozone treatment between ITO and hole transporting layer was significantly improved performance of OLEDs.
Lastly, we used above the optimal anode buffer layers application on TADF OLEDs. We discussed the different affect and performance about the emission mechanism.
[1] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl.Phys. Lett., 51, 913-915 (1987).
[2] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," J. Appl. Phy., 65, 3610-3616 (1989).
[3] S. A. Van Slyke, C. H. Chen, and C. W. Tang, "Organic electroluminescent devices with improved stability," Appl. Phys. Lett., 69, 2160-2162 (1996).
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, et al., "Light-emitting diodes based on conjugated polymers," Nature, 347, 539-541 (1990).
[5] P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi, and T. X. Zhou, "Semitransparent cathodes for organic light emitting devices," J. Appl. Phys., 87, 3080-3085 (2000).
[6] L. S. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Appl. Phys. Lett., 70, 152-154 (1997).
[7] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M. Wang, "Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices," J. Appl. Phys., 86, 1688-1692 (1999).
[8] H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, et al., "Indium tin oxide thin films for organic light-emitting devices," Appl. Phys. Lett., 74, 3444-3446 (1999).
[9] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, et al., "Surface electronic structure of plasma-treated indium tin oxides," Appl. Phys. Lett., 78, 2595-2597 (2001).
[10] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, "Effects of aquaregia treatment of indium–tin–oxide substrates on the behavior of double layered organic light-emitting diodes," Appl. Phys. Lett., 70, 2741-2743 (1997).
[11] M. Utsumi, N. Matsukaze, A. Kumagai, Y. Shiraishi, Y. Kawamura, and N. Furusho, "Effect of UV treatment on anode surface in organic EL displays," Thin Solid Films, 363, 13-16, (2000).
[12] C. N. Li, C. Y. Kwong, A. B. Djurišić, P. T. Lai, P. C. Chui, W. K. Chan, et al., "Improved performance of OLEDs with ITO surface treatments," Thin Solid Films, 477, 57-62 (2005).
[13] T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, "Effect of UV–ozone treatment on ITO and post-annealing on the performance of organic solar cells," Synthetic Met., 159, 754-756 (2009).
[14] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices," Appl. Phys. Lett., 70, 1348-1350 (1997).
[15] B.-S. KIM, K. Dong-Eun, Y.-K. JANG, N.-S. LEE, O.-K. KWON, and Y.-S. KWON, "UV-ozone surface treatment of indium-tin-oxide in organic light emitting diodes," J. Korea. Phys. Soc., 50, 1858-1861 (2007).
[16] Z. Z. You, "Combined AFM, XPS, and contact angle studies on treated indium–tin-oxide films for organic light-emitting devices," Mater. Lett., 61, 3809-3814 (2007).
[17] A. Rudawska and E. Jacniacka, "Analysis for determining surface free energy uncertainty by the Owen–Wendt method," Int. J. Adhes. Adhes., 29, 451-457 ( 2009).
[18] J. S. Kim, R. H. Friend, and F. Cacialli, "Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements," J. Appl. Phys., 86, 2774-2778 (1999).
[19] K.-X. Ma, C.-H. Ho, F. Zhu, and T.-S. Chung, "Investigation of surface energy for organic light emitting polymers and indium tin oxide," Thin Solid Films, 371, 140-147 (2000).
[20] S. Y. Kim, J.-L. Lee, K.-B. Kim, and Y.-H. Tak, "Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes," J. Appl. Phys., 95, 2560-2563 (2004).
[21] A. R. Schlatmann, D. W. Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M. Klapwijk, et al., "Indium contamination from the indium–tin–oxide electrode in polymer light‐emitting diodes," Appl. Phys. Lett., 69, 1764-1766 (1996).
[22] T. Matsushima, G.-H. Jin, and H. Murata, "Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide," J. Appl. Phys., 104, 054501 (2008).
[23] H. You, Y. Dai, Z. Zhang, and D. Ma, "Improved performances of organic light-emitting diodes with metal oxide as anode buffer," J. Appl. Phy., 101, 026105 ( 2007).
[24] J. Meyer, S. Hamwi, T. Bülow, H.-H. Johannes, T. Riedl, and W. Kowalsky, "Highly efficient simplified organic light emitting diodes," Appl. Phy. Lett., 91, 113506 (2007).
[25] J. Meyer, T. Winkler, S. Hamwi, S. Schmale, H.-H. Johannes, T. Weimann, et al., "Transparent Inverted Organic Light-Emitting Diodes with a Tungsten Oxide Buffer Layer," Adv. Mater., 20, 3839-3843 (2008).
[26] W. Jiang, H. Jianhua, C. Yanxiang, X. Zhiyuan, and W. Lixiang, "Efficient top-emitting organic light-emitting diodes with a V2O5 modified silver anode," Semicond. Sci. Technol., 22, 824 (2007).
[27] H. M. Zhang and C. H. C. Wallace, "Highly efficient organic light-emitting devices with surface-modified metal anode by vanadium pentoxide," J. Phys. D: Appl. Phys., 41, 062003 (2008).
[28] H.-T. Lu and M. Yokoyama, "Enhanced emission in organic light-emitting diodes using Ta2O5 buffer layers," Solid-State Electron., 47, 1409-1412 (2003).
[29] Y.-C. Chen, P.-C. Kao, and S.-Y. Chu, "UV-ozone-treated ultra-thin NaF film as anode buffer layer on organic light emitting devices," Opt. Express, 18, A167-A173 (2010).
[30] Y.-C. Chen, P.-C. Kao, Y.-C. Fang, H.-H. Huang, and S.-Y. Chu, "How the surface energy of ultra-thin CuF2 film as anode buffer layer affect the organic light-emitting devices?," Appl. Phys. Lett., 98, 263301 (2011).
[31] Y.-C. Chen, Y.-D. Juang, S.-Y. Chu, and P.-C. Kao, "Investigation of Time-Dependent UV-Ozone Treatment on an Ultra-Thin AgF Buffer Layer for Organic Light-Emitting Diodes," J. Electrochem. Soc., 159, H388-H392 (2012).
[32] S. Y. Kim and J.-L. Lee, "Effect of thin iridium oxide on the formation of interface dipole in organic light-emitting diodes," Appl. Phys. Lett., 87, 232105 (2005).
[33] S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, "Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices," Appl. Phys. A, 68, 447-450 (1999).
[34] C. H. Yi, C. H. Jeong, Y. H. Lee, Y. W. Ko, and G. Y. Yeom, "Oxide surface cleaning by an atmospheric pressure plasma," Surf. Coat. Technol., 177–178, 711-715 (2004).
[35] H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, M.-R. Yang, and Z.-L. Tseng, "Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer," J. Alloys Compd, 479, 520-524 (2009).
[36] H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, and R.-C. Chang, "Improved Hole-Injection and Power Efficiency of Organic Light-Emitting Diodes Using an Ultrathin Li-Doped ZnO Buffer Layer," J. Electrochem. Soc., 154, J105-J108 (2007).
[37] H.-H. Huang, S.-Y. Chu, P.-C. Kao, and Y.-C. Chen, "Improvement of highly efficient organic light-emitting diodes using Mg-doped ZnO buffer layers," Thin Solid Films, 516, 5664-5668 (2008).
[38] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, 395, 151-154 (1998).
[39] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., 75, 4-6 (1999).
[40] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, et al., "Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes," J. Am. Chem. Soc., 123, 4304-4312 (2001).
[41] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, et al., "Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials," Appl. Phys. Lett., 79, 2082-2084 (2001).
[42] C. Adachi, R. Kwong, and S. R. Forrest, "Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film," Org. Electron., 2, 37-43 (2001).
[43] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, "Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices," Appl. Phys. Lett., 83, 569-571 (2003).
[44] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, "Management of singlet and triplet excitons for efficient white organic light-emitting devices," Nature, 440, 908-912 (2006).
[45] D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Improved energy transfer in electrophosphorescent devices," Appl. Phys. Lett., 74, 442-444 (1999).
[46] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, "Thermally Activated Delayed Fluorescence from Sn4+–Porphyrin Complexes and Their Application to Organic Light Emitting Diodes — A Novel Mechanism for Electroluminescence," Adv. Mater., 21, 4802-4806 (2009).
[47] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, 492, 234-238 (2012).
[48] H. Nakanotani, K. Masui, J. Nishide, T. Shibata, and C. Adachi, "Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence," Scientific Reports, 3, 2127 (2013).
[49] Y. Noguchi, H.-J. Kim, R. Ishino, K. Goushi, C. Adachi, Y. Nakayama, et al., "Charge carrier dynamics and degradation phenomena in organic light-emitting diodes doped by a thermally activated delayed fluorescence emitter," Org. Electron., 17, 184-191 (2015).
[50] K. Masui, H. Nakanotani, and C. Adachi, "Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence," Org. Electron., 14, 2721-2726 (2013).
[51] A. S. D. Sandanayaka, T. Matsushima, and C. Adachi, "Degradation Mechanisms of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Molecules," J. Phys. Chem. C, 119, 23845-23851 (2015).
[52] B. S. Kim and J. Y. Lee, "Interlayer free hybrid white organic light-emitting diodes with red/blue phosphorescent emitters and a green thermally activated delayed fluorescent emitter," Org. Electron, 21, 100-105 (2015).
[53] L. J. Rothberg and A. J. Lovinger, "Status of and prospects for organic electroluminescence," J. Mater. Res., 11, 3174 (1996).
[54] V. Bulović, M. A. Baldo, and S. R. Forrest, "Excitons and Energy Transfer in Doped Luminescent Molecular Organic Materials," in Org. Electron. Mater: Conjugated Polymers and Low Molecular Weight Organic Solids, R. Farchioni and G. Grosso, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 391-441 (2001).
[55] D. J. Gaspar and E. Polikarpov, OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes: CRC Press (2015).
[56] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, et al., "Dual role of LiF as a hole-injection buffer in organic light-emitting diodes," Appl. Phys. Lett., 84, 2913-2915 (2004).
[57] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, et al., "Buffer-layer-induced barrier reduction: Role of tunneling in organic light-emitting devices," Appl. Phys. Lett., 84, 425-427 (2004).
[58] C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, "High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials," Appl. Phys. Lett., 77, 904-906 (2000).
[59] G. Bracco and B. Holst, Surface science techniques: Springer Science & Business Media (2013).
[60] D. K. Owens and R. C. Wendt, "Estimation of the surface free energy of polymers," J. Appl. Poly. Sci., 13, 1741-1747 (1969).
[61] M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, et al., "Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives," J. Nanopart. Res., 11, 1521-1554 (2009).
[62] T. W. H. Oates, H. Wormeester, and H. Arwin, "Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry," Prog. Surf. Sci., 86, 328-376 (2011).
[63] R. M. A. Azzam and N. M. Bashara, "Generalized Ellipsometry for Surfaces with Directional Preference: Application to Diffraction Gratings," J. Opt. Soc. Am., 62, 1521-1523 (1972).
[64] T. Young, "An Essay on the Cohesion of Fluids," Philos. Trans. R. Soc. London, 95, 65-87 (1805).
[65] H. W. Fox and W. A. Zisman, "The spreading of liquids on low-energy surfaces. II. Modified tetrafluoroethylene polymers," J. Colloid Sci., 7, 109-121 (1952).
[66] W. A. Zisman, "INFLUENCE OF CONSTITUTION ON ADHESION," Ind. Eng. Chem., 55, 18-38 (1963).
[67] F. M. Fowkes, "ATTRACTIVE FORCES AT INTERFACES," Ind. Eng. Chem., 56, 40-52 (1964).
[68] J. R. Macdonald, "Impedance spectroscopy," Annals of Biomedical Engineering, 20, 289-305 (1992).
[69] H. Park, H. Kim, J. Lee, K. Lee, J. Yi, S. Oh, et al., "Admittance spectroscopic analysis of organic light emitting diodes with the CFX plasma treatment on the surface of indium tin oxide anodes," Thin Solid Films, 516, 1370-1373 (2008).
[70] S. C. Tse, K. K. Tsung, and S. K. So, "Carrier injection and bipolar transport in NPB for single-layer OLEDs," Proc. of SPIE, 6655, 66551Q-1 (2007).
[71] W. Song, S. K. So, D. Wang, Y. Qiu, and L. Cao, "Angle dependent X-ray photoemission study on UV-ozone treatments of indium tin oxide," Appl. Surf. Sc., 177, 158-164 (2001).
[72] S. Liu, R. Liu, Y. Chen, S. Ho, J. H. Kim, and F. So, "Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes," Chem. Mater., 26, 4528-4534 (2014).
[73] H. Y. Mao, R. Wang, J. Q. Zhong, S. Zhong, J. D. Lin, X. Z. Wang., "A high work function anode interfacial layer via mild temperature thermal decomposition of a C60F36 thin film on ITO," J. Mater. Chem. C, v1, 1491-1499 (2013).