簡易檢索 / 詳目顯示

研究生: 林尚為
Lin, Shang-Wei
論文名稱: 應用於車載充電器之雙向維也納轉換器研製
Design and Implementation of a Bidirectional Vienna Converter for On-Board Charger
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 69
中文關鍵詞: 維也納轉換器三相功率因數校正器電網追隨控制
外文關鍵詞: Vienna rectifier, three-phase power factor corrector, grid-following control
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 車載充電器在電動車發展過程扮演重要的角色,本論文利用三相雙向維也納轉換器作為其交流-直流電能轉換的主要架構。當車載充電器由電網對電池充電時,利用平均電流控制法實現功率因數校正並穩定匯流排電壓;當車載電池輸出電能至電網時,利用時域控制法實現換流器電網追隨控制策略,以調節饋入電網之電能。本文首先分析與探討三相雙向維也納轉換器工作原理、穩態特性與雙向控制方法,並使用寬能間隙元件-碳化矽開關以提高系統效率及功率密度。最後,實作電網電壓220 V、匯流排電壓 800 V、額定輸出功率 10 kW、切換頻率40 kHz 之雙向維也納轉換器。實驗結果顯示於交流-直流模式,最高效率在輸出功率8 kW時達98.4%,電網電流總諧波失真率最低可達3.94%,功率因數最高可達0.998;在直流-交流模式,其最高效率在輸出功率8 kW時達98.3%,電網電流總諧波失真率最低可達4.84%。

    On-board chargers play a crucial role in the development of electric vehicles (EVs). In this thesis, a 3-φ bidirectional Vienna converter (BVC) for AC-DC power transfer is discussed. When grid provides power to EV, the average current control is used to achieve power factor correction and bus voltage regulation; When EV provides energy to grid, time domain sinusoidal PWM is adopted to regulate the energy fed into the grid. The operating principles, the steady-state characteristics, and bidirectional control methods of the 3-φ BVC are discussed firstly. In addition, silicon carbide power devices are implemented to enhance the efficiency and power density of the system. Finally, a 3-φ BVC is implemented with grid voltage of 220 V, bus voltage of 800 V, rated power of 10 kW, and switching frequency of 40 kHz. The experimental results show that in AC-DC mode, BVC can achieve the highest efficiency of 98.4% at Pbus=8 kW. The highest power factor is 0.998 with total harmonic distortion ratio of AC current (THDi) of 3.94%. In DC-AC mode, BVC reaches the highest efficiency of 98.3% at Pac=8 kW and achieves the lowest THDi of 4.84% under Pac=10 kW.

    摘要 i Abstract ii 致謝 iii TABLE OF CONTENTS iv LIST OF TABLES v LIST OF FIGURES vi Chapter 1 Introduction 1 1.1 Background and Motivations 1 1.2 Thesis Organization 4 Chapter 2 Introduction to Bidirectional AC-DC Converters 5 2.1 Topologies of Bidirectional AC-DC Converter 5 2.2 Introduction to Control Methods and Modulation Schemes of Bidirectional AC-DC Converter 11 2.3 Introduction to WBG Devices 19 Chapter 3 Analyses and Controls of Bidirectional Vienna Converter in EV Applications 24 3.1 Operating Principles and Control Method of Bidirectional Vienna Converter in G2V Stage 24 3.2 Operating Principles and Control Method of Bidirectional Vienna Converter in V2G Stage 42 Chapter 4 Hardware Implementation and Experimental Results 52 4.1 System Specifications and Key Components Design 52 4.2 Experimental Results and Discussions 56 Chapter 5 Conclusions and Future Works 66 5.1 Conclusions 66 5.2 Future Works 66 References 67

    [1] J. Rogelj, M. d. Elzen, and J. Portugal-Pereira, “Emissions gap report 2022,” United Nations Environment Programme, Nairobi, 2022.
    [2] E. M. Bibra et al., “Global EV outlook 2022,” International Energy Agency, 2022.
    [3] J. Yuan, L. Dorn-Gomba, A. D. Callegaro, J. Reimers, and A. Emadi, “A review of bidirectional on-board chargers for electric vehicles,” IEEE Access, vol. 9, pp. 51501-51518, 2021.
    [4] M. Yilmaz and P. T. Krein, “Review of battery charger topologies charging power levels and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
    [5] L. Pan and C. Zhang, “A high power density integrated charger for electric vehicles with active ripple compensation,” Math. Probl. Eng., 2015.
    [6] T. Na, X. Yuan, J. Tang, and Q. Zhang, “A review of on-board integrated electric vehicles charger and a new single-phase integrated charger,” CPSS Trans. Power Electron. Appl., vol. 4, no. 4, pp. 288-298, Dec. 2019.
    [7] C. Liu, K.T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-tohome, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE, vol. 101, no. 11, pp. 2409–2427, Nov. 2013.
    [8] P. Pani, A. R. Athreya, A. Panday, H. O. Bansal, and H. P. Agrawal, “Integration of the vehicle-to-grid technology,” in Proc. Int. Conf. Econ. Environ., 2015, pp. 1-5.
    [9] S. Inamdar, A. Thosar, and S. Mante, “Literature review of 3.3kW on board charger topologies,” in Proc. Int. conf. Electron., Commun. Aerosp. Technol., 2019, pp. 276-281.
    [10] A. Chandwani, S. Dey, and A. Mallik, “Cybersecurity of onboard charging systems for electric vehicles—review, challenges and countermeasures,” IEEE Access, vol. 8, pp. 226982-226998, 2020.
    [11] R. Zhang, S. Liu, B. Li, N. Zhao, G. Wang, and D. Xu, “Totem-pole bridgeless boost PFC converter based on GaN HEMT for air conditioning applications,” in Proc. IEEE Conf. Energy Internet Energy System Integration, 2018, pp. 1-9.
    [12] H. Li et al., “A 6.6kW SiC bidirectional on-board charger,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2018, pp. 1171-1178.
    [13] C. Zhang, K. Qu, B. Hu, J. Wang, X. Yin, and Z. J. Shen, “A high-frequency dynamically coordinated hybrid Si/SiC interleaved CCM totem-pole bridgeless PFC converter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 2, pp. 2088-2100, Apr. 2022.
    [14] Z. Liu, Z. Huang, F. C. Lee, and Q. Li, “Digital-based interleaving control for GaN-based MHz CRM totem-Pole PFC,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, Sep. 2016, pp. 808-814.
    [15] M. H. Park, J. I. Baek, J. K. Han, C. Y. Lim, and G. W. Moon, “ZVS interleaved totem-pole bridgeless PFC converter with phase-shifting control,” in Proc. Int. Power Electron. Conf., 2018, pp. 3533-3537.
    [16] L. Huang, W. Yao, and Z. Lu, “Interleaved totem-pole bridgeless PFC rectifier with ZVS and low input current ripple,” in Proc. IEEE Energy Convers. Congr. Expo., 2015, pp. 166-171.
    [17] L. Tan, Y. Li, C. Liu, P. Wang, X. Lv, and Z. Li, “High performance controller for voltage-controlled current source inverter with nonlinear loads,” in Proc. IEEE Energy Convers. Congr. Expo., 2009, pp. 2942-2948.
    [18] P. Xiao, K. A. Corzine, and G. K. Venayagamoorthy, “Multiple reference frame-based control of three-phase PWM boost rectifiers under unbalanced and distorted input conditions,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2006-2017, July 2008.
    [19] Y. Sato, T. Ishizuka, K. Nezu, and T. Kataoka, “A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current,” IEEE Trans. Ind. Appl., vol. 34, no. 3, pp. 480-486, May-Jun. 1998.
    [20] “Demystifying three-phase PFC topologies,” ON Semiconductor, Feb. 2021.
    [21] W. Wu, F. Wang and Y. Wang, “A novel efficient T-type three level neutral-point-clamped inverter for renewable energy system,” in Proc. Int. Power Electron. Conf., pp. 470-474, 2014.
    [22] K. Kumari, S. Mapa, and R. Maheshwari, “Loss analysis of NPC and T-type three-level converter for Si, SiC, and GaN based devices,” in Proc. IEEE Power India Int. Conf., 2020, pp. 1-6.
    [23] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. Annu. Appl. Power Electron. Conf. Expo., 1993, pp. 267-273.
    [24] S. Kurm and V. Agarwal, “A hysteresis current controlled grid connected full bridge inverter with zero current switching,” in Proc. IEEE Int. Conf. Power Electron., Intell. Control Energy Syst., 2018, pp. 599-604.
    [25] C. A. Canesin and I. Barbi, “A unity power factor multiple isolated outputs switching mode power supply using a single switch,” in Proc. Annu. Appl. Power Electron. Conf. Expo., Mar. 1991, pp. 430-436.
    [26] H. S. Youn, J. S. Park, K. B. Park, J. I. Baek, and G. W. Moon, “A digital predictive peak current control for power factor correction with low-input current distortion,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 900-912, Jan. 2016.
    [27] R. Redl and B. P. Erisman, “Reducing distortion in peak-current-controlled boost power-factor correctors,” in Proc. Appl. Power Electron. Conf. Expo., pp. 576-583, 1994.
    [28] L. Wang, Q. H. Wu, W. H. Tang, Z. Y. Yu, and W. Ma, “CCM-DCM average current control for both continuous and discontinuous conduction modes boost PFC converters,” in Proc. IEEE Electron. Power Energy Conf., Oct. 2017, pp. 1-6.
    [29] R. Redl and L. Balogh, “RMS, DC, peak, and harmonic currents in high-frequency power-factor correctors with capacitive energy storage,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 1992, pp. 533-540.
    [30] R. Etz, T. Patarau, and D. Petreus, “Comparison between digital average current mode control and digital one cycle control for a bridgeless PFC boost converter,” in Proc. IEEE Int. Symp. Design Technol. Electron. Packag., Oct. 2012, pp. 211-215.
    [31] A. F. de Souza, D. C. Pereira, and F. L. Tofoli, “Comparison of control techniques used in power factor correction rectifiers,” in Proc. IEEE Brazilian Power Electron. Conf. Southern Power Electron. Conf., 2015, pp. 1-6.
    [32] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto, “A new multilevel PWM method: a theoretical analysis,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 497-505, Jul. 1992.
    [33] M. Calais, L. J. Borle, and V. G. Agelidis, “Analysis of multicarrier PWM methods for a single-phase five level inverter,” in Proc. IEEE Annu. Power Electron. Spec. Conf., 2001, pp. 1351-1356.
    [34] S. Agarwal and S. R. Deore, “Level shifted SPWM of a seven level cascaded multilevel inverter for STATCOM applications,” in Proc. IEEE Int. Conf. Nascent Technol. Eng. Field, 2015, pp. 1-7.
    [35] N. Kaminski, “State of the art and the future of wide band-gap devices,” in Proc. Eur. Conf. Power Electron. Appl., 2009, pp. 1-9.
    [36] “SiC power devices and modules, ” ROHM Semiconductor, vol. 1, 2020.
    [37] “IXFB30N120P,” Littelfuse, 2010.
    [38] “C3M0075120D,” CREE, Jan. 2021.

    無法下載圖示 校內:2028-08-27公開
    校外:2028-08-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE