| 研究生: |
杜朝賢 Tu, Chao-Hsien |
|---|---|
| 論文名稱: |
利用液相氧化法做鈍化處理磷化銦鎵/砷化鎵異質接面雙極性電晶體之研究 The Investigations of InGaP/GaAs HBTs with Liquid Phase Oxidation Passivation |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 異質接面雙極性電晶體 、液相氧化法 、磷化銦鎵 |
| 外文關鍵詞: | LPO, InGaP/GaAs, HBT |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們使用液相氧化法應用在磷化銦鎵/砷化鎵異質接面雙極性電晶體(InGaP/GaAs HBT)上。在此氧化法操作使用上相較於其他系統氧化法較為簡單且容易。並能在低溫環境(30℃~70℃)下操作無需外加其他能量輔助來成長出較均勻的氧化層。此外,在氧化層方面,我們也利用掃描式電子顯微鏡(SEM)和原子力顯微鏡(AFM)的分析來探討氧化層表面的變化。且利用不同特性的氧化層在異質接面雙極性電晶體上做鈍化層的研究及其探討直流特性。利用液相氧化法在表面做鈍化的應用,可以明顯地得到直流增益的增加,這表示在基極-射極表面能夠充份的抑制電流的復合,降低基極電流。在直流特性分析方面,在電流增益和崩潰電壓方面比未鈍化的結構有些許的改善。在基極-集極介面的崩潰電壓方面,鈍化處理的崩潰電壓都有明顯的改善。最大崩潰電壓在於表面氧化處理15分鐘的元件(23.8伏特)。在低集極電流部份,利用表面鈍化處理後得到最小的集極電流(7.5x10-11安培)。而且在此低集極區域,經過鈍化處理的電晶體比起未鈍化處的電晶體有數倍增益的差異。
InGaP/GaAs heterojunction bipolar transistors (HBTs) passivated with liquid phase oxidized layers is probed. Compare with other oxidation systems, liquid phase oxidization (LPO) method to grow the uniform oxide is simple and easy without extra energy in low temperature environment (from 30°C to 70°C). The oxidized layers are first characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Then, the oxide layers are then applied to the InGaP/GaAs HBTs. As results show, the DC current gain increases significantly by using the LPO method passivated on the InGaP/GaAs surface. It could prove the evidence that the passivation could sufficiently suppress the recombination current and then reduce the base current. In addition, the breakdown voltage can be also improved dramatically. The breakdown voltage for the device with surface oxidized 15 minutes can be increased up to 23.8 V. The lowest collector current was available in surface treatment (up to 7.5*10-11A). And the current gain would have several folds enhancement for the device with oxide treatment than that without treatment.
[1] W. Schockley, “Circuit elements utilizing semiconductive material,” U.S. Patent, N. 2569, pp. 347, 1951
[2] H. Kroemer, “Theory of Wide-Gap Emitter for Transistors,” Proc.IRE, vol. 45,
N11, pp. 1535-1537, 1957
[3] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-State Electron., vol. 15, pp.12, 1972
[4] M. J. Mondry and H. Kroemer, “Heterostructure bipolar transistor using a (Ga, InP) emitter on a GaAs base grown by molecular beam epitaxy,” IEEE Electron Dev. Lett., vol. 15, pp.12, 1972
[5] S. L. Delage, M. A. di Forte-Poisson, H. Blanck, C. Brylinski, E. Chartier, E. Chartier, and P. Collot, “FIRST MICROWAVE CHARACTERISATION OF LP-MOCVD GROWN GalnP/GaAs SELF-ALIGNED HBT,” Electron Lett., vol. 27, p.253, 1991
[6] F. Schwierz and J J. Liou, “Modern Microwave Transistors: Theory, Design, and Performance,” USA, New Jersey, John Wiley & Sons, Inc, 2002
[7] Sze SM, “High-speed semiconductor device,” New York, Wiley, 1990
[8] J. R. Lothian, J. M. Kua, F. Ren, and S. J. Pearton, “Plasma and wet chemical etching of InGaP,” J. electronic meterials, vol. 21, pp. 441-445, 1992
[9] S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathy, R. L. Masaities, and U. K. Chakrabarti,“ Surface recombination velocities on processed InGaP p-n junction,” Appl. Phys. Lett., vol. 63, p.3610-3612, 1993
[10] P. M. Mooney, “Deep donor levels (DX centers) in III-V semiconductors,” J. Appl. Phys., vol. 67, pp. R1-R24, 1990
[11] R.Plana, J Graffeuil, S. L. Delage, H. Blanck, M. A. Fortepoisson, C. Brylinski, and E. Chartier, “Low frequency noise in self- aligned GaInP/GaAs heterojunction bipolar transistor,” Electron Lett., vol.28, pp. 2354-2356, 1992.
[12] H. H. Wang, Y. H. Wang, and M. P. Houng, “Near room temperature selective oxidation on GaAs using photoresist as a Mesk,” Jpn.J. Appl. Phys., vol. 37, pp. L988-L990, 1998
[13] H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effect of pH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs,” .J. Electrochem.Soc.,vol. 146, pp. 2328-2332, 1999.
[14] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “A GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” .IEEE Trans. Electron Dev., vol. 20, pp. 18-20, 1999.
[15] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “ GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” .IEEE Trans. Electron Dev., vol. 48, pp. 634-637, 2001.
[16] K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “Liquid phase chemical enhanced oxidation on AlGaAs and its application,” Jpn.J. Appl. Phys., vol. 43, pp. 4087-4091, 2004
[17] K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “AlGaAs/InGaAs metal-oxide–semiconductor pseudomorphic high-electron- mobility transistor with liquid phase oxidized AlGaAs as gate dielectric,” Solid-State Electron., vol. 49, pp. 213-217, 2005
[18] K. W. Lee, P. W. Sze, M. P. Houng and Y. H. Wang, “Characterization of the In GaAs oxide prepared by liquid phase oxidation,” IEDMS, Hsnchu, Taiwan, 2004, pp. 435-437
[19] K. W. Lee, Y. J. Lin, N. Y. Yang, Y. C. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “InGaP/InGaAs/ GaAs metal-oxide-semiconductor pseudomorphic high electron mobility transistor with a liquid phase oxidized InGaP gate,” ICSICT, Beijing, China, 2004, pp.2301-2304.
[20] D. J. Coleman, D. W. Shaw, and R. D. Dobrott, “On the mechanism of GaAs anodization,” J. Electrochem. Soc., vol. 124, pp. 239-241, 1977.
[21] J. R. Meyer-Arendt, Introduction to classical and modern optics. Englewood Cliffs, N. J.: Prentice-Hall Inc., 1971
[22] T. Sugano, “Oxidation of GaAsP surface by oxygen plasma and properties of oxide film,” J. Electrochem . Soc. vol. 121, no. 1 pp. 113-118, 1974
[23] P.M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter- wave integrated circuits,” IEEE Trans. Electron Dev., vol. 34, pp. 2571-2579, 1987.
[24] Z.Jin, S. Neumann, W. Prost, and F.J. Tegude, “Surface recombination mechanism in graded- base InGaAs-InP HBTs,” IEEEE Trans. Electron Devices, Vol. 51, pp1044-1045, 2004
[25] J.J JIU , W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, Wiley, New York, 1998.
[26] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987
[27] J. Masum, P. Parmiter, T. J. Hall, and M. Crouch, “Current analysis of polyimide passivated InGaP/GaAs HBT,” IEE Proc.- Circuits Devices Syst., 1996, vol. 143, pp. 307-312.
[28] R. Driad, Z. H. Lu, S. Charbonneau, W. R. Mckinnon, S. Laframboise, P. J. Poole, and S. P. Mcalister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1987
[29] S. W. Tan, H. R. Chen, W. T. Chen, M. Y. Chu and W. S. Lour, “Sulfur- and InGaP – passivation heterojunction bipolar transistors,” IWJT’04 Shanghai, China, 2004, pp 228-231.
[30] C. Y. Chen, S. I. Fu, S. Y. Cheng, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs,” IEEE Trans. Electron Dev., vol. 51, pp. 1963-1971, 2004.
[31] J. J Chen, G. B. Gao, and H. Morkoc, “Breakdown behavior of GaAs/AlGaAs HBT’s,” IEEE Trans. Electron Dev., vol. 36, pp. 2165-2172, 1989.
[32] R. J. Malik, N. Chand, J. Nagle, R. W. Ryan, K. Alavi, and A. Y. Cho, “Temperature dependence of common-emitter I-V and collector breakdown voltage characteristics in AlGaAs/GaAs and AlInAs/GaInAs HBT’s Grown by MBE,” IEEE. Electron Dev.Lett., vol. 13, no.11, pp. 557-559, 1992.
[33] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Dev., vol. 41, pp. 643-647, 1994.
[34] B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistor with a step-graded base-collector heterojunction,” IEEE Trans. Electron Dev., vol. 16, pp. 479-481, 1995.
[35] B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987
[36] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza,”Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992
[37] R. lyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988
[38] Zhi Jin, W. Prost, S. Neumann, and F. J. Tegude “Comparison of the passivation effects on self- and non-self-aligned InP/InGaAs/InP double heterostructure bipolar transistors by low-temperature deposited SiNx,” Appl. Phys. Lett., vol. 96, pp. 777-783, 2004