| 研究生: |
林義旭 Lin, Yi-shu |
|---|---|
| 論文名稱: |
二階損耗性物料存貨模式之研究 The Research of Two-Echelon Inventory Model with Deteriorating Items |
| 指導教授: |
林清河
Lin, Chinho |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 經濟批量模式 、二階存貨模式 、週期性物料 、報童模式 、最佳解分析 、整合模式政策 、損耗性物料 |
| 外文關鍵詞: | Cooperative Policy, Deterioration, Optimal Analysis, Two-Echelon Inventory Model, EOQ, Periodical Products, Newsboy Model |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在物料管理方面,如何適時、適量的控制存貨,以達到最低的總成本,是任一企業最為注重的問題。但是很明顯的發現,有非常多的物料都是具有損耗或退流行的性質,例如生鮮食品、電子零件、香水、攝影底片、放射性物質、週期性商品等等;而製造商應就整體環境考量,以決定最有利的製造方式。基於上述的理由,本研究將分別針對物料具有週期性或是一般損耗性來進行研究探討。
首先,我們針對週期性物料,建構出二階存貨模式之製造商的利潤函數,並對於此函數進行傳統的最佳解分析,以期獲得製造商的生產數量以及原物料的訂購週期。根據報童模式,且在零售商的需求量為一常態分配的前提之下,獲得製造商的利潤函數最佳解之充分與必要條件;由於,無法獲得唯一組解,所以,透過敏感度分析以及其在管理上的含義,對於所獲得最佳解之必要條件進行探討並解釋之。
其次,針對二階損耗性物料的特性,建構出固定週期時間的成本函數;並對於此成本函數進行最佳解分析,獲得固定週期時間模式有唯一組解;再透過敏感度分析獲得一些管理上的含義,並對於零售商願意加入此整合模式加以探討。
最後,考慮物料具有損耗性,且允許完全補貨下,且對於上述模式之固定週期時間給予放寬,建構出非固定週期時間的成本函數;並對於此成本函數進行最佳解分析,在固定補貨次數下,可以獲得最低成本的製造時間點;再透過敏感度分析獲取一些管理上的含義。
The control and maintenance of physical goods inventories is a common problem to all enterprises in any sectors. Two fundamental questions in controlling the inventory of any physical goods are when to replenish the inventory and how much to order for replenishment. Previous studies did not consider the deterioration property of the inventory. Nevertheless, all the items on earth deteriorate eventually, and some of which deteriorate significantly, such as certain types of food, photographic films, electronic components and radioactive substances, periodically products, etc. Hence the research developed a two-echelon inventory model for a periodical commodity and a two-echelon inventory model with deteriorating items, respectively.
First of all, we proposed a two-echelon inventory model for a periodical commodity, in which the market and manufacturing channels are combined. This model can be used to solve the production policy and the order policies of the raw materials for the manufacturer. By assuming that the retailers’ demand obeys normal distribution and that the retailer makes orders according to the Newsboy Model, we derive the necessary and sufficient conditions for the optimal solution of production size, wholesale price, and replenishment cycle of raw materials for the manufacturer. Also, the necessary condition is explored in order to obtain managerial insights and economic implications based on numerical examples and sensitivity analysis.
Second, a cooperative inventory policy between suppliers and buyers is also proposed. We consider the case of deteriorating items, and permit the completed backorder with fixed service rate in the problem. We directly solve the problem in a specified planning horizon and present a procedure to find the optimal solution. Numerical examples are provided to illustrate the solution procedure. In addition, the cooperative policies between suppliers and buyers are discussed.
Finally, we solve the problem without the condition of equal replenishments periods during a specified planning horizon and present a procedure to find the optimal solution. Numerical examples are provided to illustrate the solution procedure and the cooperative policies between the suppliers and the buyers are also discussed. Furthermore, the results also show that the optimal cost of the model is lower than that of the model of assuming equal replenishments periods.
參考文獻:
1. Andijani A., Al-Dajani M., Analysis of deteriorating inventory/ production systems using a linear quadratic regulator. European Journal of Operational Research, 1998, 106(1), 82-89.
2. Balkhi Z. T., On the global solution to an integrated inventory system with general time varying demand, production and deterioration rates. European Journal of Operational Research, 1999, 114(1), 29-37.
3. Balkhi Z. T., Benkherouf L., A production lot size inventory model for deteriorating items and arbitrary production and demand rates. European Journal of Operational Research, 1996, 92(2), 302-309.
4. Benkherouf L., On an inventory model with deteriorating items and decreasing time-varying demand and shortages. European Journal of Operational Research, 1995, 86(2), 293-299.
5. Benkherouf L., Mahmoud M. G., On an inventory model for deteriorating items with increasing time-varying demand and shortages. Journal of the Operational Research Society, 1996, 47(1), 188-200.
6. Chang H. J., Dye C. Y., An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of the Operational Research Society, 1999, 50(11), 1176-1182.
7. Chang P. L., Lin C. T., On the effect of centralization on expected costs in a multi-location newsboy problem. Journal of the Operational Research Society, 1991, 42 (11), 1025-1031.
8. Chen J. M., An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting. International Journal of Production Economics, 1998, 55(1), 21-30.
9. Cherikh M., On the effect of centralization on expected profits in a multi-location Newsboy problem. Journal of the Operational Research Society, 2000, 51(6), 755-761.
10. Chung K. J., Lin C. N., Optimal inventory replenishment models for deteriorating items taking account of time discounting. Computers & Operations Research, 2001, 28(1), 67-83.
11. Chung K. J., Tsai S. F., Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value. Computers & Operations Research, 2001, 28(9), 915-934.
12. Covert R. P., Philip G. C., An EOQ model for items with weibull distribution deterioration. AIIE Transactions, 1973, 5, 323-326.
13. Das C., Goyal S. K., Economic ordering policy for deterministic two-echelon distribution systems. Engineering Costs and Production Economics, 1991, 21, 227-231.
14. Elsayed E. A., Teresi C. A., Analysis of inventory systems with deteriorating items. International Journal of Production Research, 1983, 21(4), 449-460.
15. Emmons H., Gilbert S. M., The role of returns policies in pricing and inventory decisions for catalogue goods. Management Science, 1998, 44(2), 276-283.
16. Eppen G. D., Effect of centralization on expected costs in a multi-location newsboy problem. Management Science, 1979, 25(5), 498-503.
17. Gallego G., Moon I., The distribution-free newsboy problem-review and extensions. Journal of the Operational Research Society, 1993, 44(6), 825-734.
18. Ghare P. M., Schrader G. F., A model for exponentially decaying inventory. Journal of Industrial Engineering, 1963, 14(5), 238-243.
19. Giri B. C., Goswami A., Chaudhuri K. S., An EOQ Model for deteriorating items with time varying demand and costs. Journal of the Operational Research Society, 1996, 47(11), 1398-1405.
20. Goyal S. K., An integrated inventory model for a single supplier-single customer problem. International Journal of Production Research, 1976, 15, 107-111.
21. Goyal S. K., A one-vendor multi-buyer integrated inventory model: A comment. European Journal of Operational Research, 1995, 82(1), 209-210.
22. Goyal S. K., On improving the single-vendor single-buyer integrated production inventory model with a generalized policy. European Journal of Operational Research, 2000, 125(2), 429-430.
23. Goyal S. K., Giri B. C., Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 2001, 134(1), 1-16.
24. Goyal S. K., Nebebe F., Determination of economic production-shipment policy for a single-vendor-single-buyer system. European Journal of Operational Research, 2000, 121(1), 175-178.
25. Ha D., Kim S. L., Implementation of JIT purchasing: an integrated approach. Production Planning & Control, 1997, 8(2), 152-157.
26. Hall R. W., On the integration of production and distribution: Economic order and production quantity implications. Transportation Research Part B-Methodological,1996,30 (5): 387-403.
27. Hariga M. A., Al-Alyan A., A Lot sizing heuristic for deteriorating items with shortages in growing and declining markets. Computers & Operations Research, 1997, 24(1), 1075-1083.
28. Hill R. M., The single-vendor single-buyer integrated production-inventory model with a generalised policy. European Journal of Operational Research, 1997, 97(3), 493-499.
29. Hill R. M., The optimal production and shipment policy for the single-vendor single buyer integrated production-inventory problem. International Journal of production Research, 1999, 37(11), 2463-2475.
30. Hoque M. A., Goyal S. K., An optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transport equipment. International Journal of Production Economics, 2000, 65(3), 305-315.
31. Horn R. A., Johnson C. R., Matrix Analysis, Cambridge University Press, New York. 1985.
32. Kim C. H., Hong Y., An optimal production run length in deteriorating production processes. International Journal of production Economics, 1999, 58(2), 183-189.
33. Lam S. M., Wong D. S., A fuzzy mathematical model for the joint economic lot size problem with multiple price breaks. European Journal of Operational Research, 1996, 95(3), 611-622.
34. Lariviere M. A, Porteus E. L., Selling to the newsvendor: an analysis of price-only contracts. Manufacturing & Service Operations Management, 2001, 3 (4), 293-305.
35. Lau H. S, Lau A. H. L., Manufacturer’s pricing strategy and return policy for a single-period commodity. European Journal of Operational Research, 1999, 116(2), 291-304.
36. Lau A. H. L, Lau H. S., The effects of reducing demand uncertainty in a manufacturer-retailer channel for single-period products. Computers & Operations Research, 2002, 29(11), 1583-1602.
37. Lin C., Tan B., Lee W. C., An EOQ model for deteriorating Items with time-varying demand and shortages. International Journal of Systems Science, 2000, 31(3), 391-400.
38. Lu L., A one-vendor multi-buyer integrated inventory model. European Journal of Operational Research, 1995, 81(2), 312-323.
39. Mantrala M. K, Raman K., Demand uncertainty and supplier’s returns policies for a multi-store style-good retailer. European Journal of Operational Research, 1999, 115(2), 270-284.
40. Moon I., Choi S., The distribution free continuous review inventory system with a service level constraint. Computers & Industrial Engineering, 1995, 27(1-4), 209-212.
41. Papachristos S., Skouri K., An optimal replenishment policy for deteriorating items with time-varying demand and partial -exponential type- backlogging. Operations Research Letters, 2000, 27(4), 175-184.
42. Pasternack B. A., Optimal pricing and return policies for perishable commodities. Marketing Science, 1985, 4 (2), 166-176.
43. Philip G. C., A generalized EOQ model for items with weibull distribution deterioration. AIIE Transactions, 1974, 6, 159-162.
44. Sachan R. S., On (T,Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 1984,35(11), 1013-1019.
45. Scarf H., A min-max solution of an inventory problem. In Studies in the mathematical theory of inventory and production. (Arrow K., Karlin S., Scarf H., Eds) 201-209, Standford University Press, California, 1958.
46. Seo Y., Jung S., Hahm J., Optimal reorder decision utilizing centralized stock information in a two-echelon distribution system. Computers & Operations Research, 2002, 29(2), 171-193.
47. Sharafali M., Co H. C., Some models for understanding the cooperation between the supplier and the buyer. International Journal of Production Research, 2000, 38(15), 3425-3449.
48. Silver E. A, Pyke D. F, Peterson R., Inventory management and production planning and scheduling, John Wiley & Sons, New York. 1998.
49. Teng J. T., Chern M. S., Yang H. L., An optimal recursive method for various inventory replenishment models with increasing demand. Naval Research Logistics, 1997, 44(8), 791-806.
50. Teng J. T., Chern M. S., Yang H. L., Wang Y. J., Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand, Operations Research Letters, 1999, 24(1-2), 65-72.
51. Viswanathan S., Optimal strategy for the integrated vendor-buyer inventory model. European Journal of Operational Research, 1998, 105(1), 38-42.
52. Wang T. Y., Chen L. H., A production lot size inventory model for deteriorating items with time-varying demand. International Journal of Systems Science, 2001, 32(6), 745-751.
53. Wee H. M., A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers & Operations Research, 1995, 22(3), 345-356.
54. Wee H. M., Law S. T., Economic production lot size for deteriorating items taking account of the time-value of money. Computers & Operations Research, 1999, 26(6), 545-558.
55. Wu K. S., EOQ inventory model for items with weibull distribution deterioration, time-varying demand and partial backlogging. International Journal of Systems Science, 2002, 33(5), 323-329.
56. Wu J. W., Lin C., Tan B., Lee W. C., An EOQ inventory model with ramp type demand rate for items with weibull deterioration. Information and Management Sciences, 1999, 10(3), 41-51.
57. Yang P. C., Wee H. M., Economic ordering policy of deteriorated item for vendor and buyer: an integrated approach. Production Planning & Control, 2000, 11(5), 474-480.
58. Yang P. C., Wee H. M., A single-vendor and multiple-buyers production-inventory policy for a deteriorating item. European Journal of Operational Research, 2002, 143(3), 570-581.
59. Yao J. S., Chang S. C., Su J. S., Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity. Computers & Operations Research, 2000, 27(10), 935-962.
60. Yao J. S., Su J. S., Fuzzy inventory with backorder for fuzzy total demand based on interval-valued fuzzy set. European Journal of Operational Research, 2000, 124(2), 390-408.
61. Yao J. S., Chiang J. S., Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. European Journal of Operational Research, 2003, 148(2), 401-409.