簡易檢索 / 詳目顯示

研究生: 莊立恩
Chuang, Li-En
論文名稱: 無凝聚性土壤於反覆作用力下之彈性應變與塑性應變關係
Plastic Strain and Elastic Strain of Cohesionless Soil Under Cyclic Loading
指導教授: 郭玉樹
Kuo, Yu-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 85
中文關鍵詞: 離岸風電樁基礎設計無凝聚性土壤動態三軸剪力試驗彈性應變塑性應變
外文關鍵詞: offshore wind, foundations design, Stiffness Degradation Model, cyclic, triaxial test, resilient modulus
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 進行離岸風機水下基礎設計時,為進行不同設計載重組合下之整體動態反應分析,需考量不同載重條件下之基礎受力-變形反應,以建立合適之基礎勁度矩陣。對於埋置於無凝聚土壤中之樁基礎,當受到ULS條件之設計載重作用時,樁基礎之側向行為可以ULS設計載重等級之受力-變形曲線割線斜率作為基礎勁度;此時,樁週土壤之受力變形反應可透過靜態三軸剪力試驗之應力-應變曲線求得。當樁基礎受SLS條件之作用力時,同時需考量樁基礎受反覆作用力下之永久變形量;此時,樁週土壤受反覆應力作用下之永久塑性應變將反應於土壤應力-應變曲線之割線斜率。對於受到FLS條件下作用力之樁基礎,其受力變形反應近乎彈性。此時,樁週土壤於反覆作用力下之彈性應變將反應於應力-應變曲線之回彈模數。隨著樁基礎所受之反覆作用力持續增加,樁週土壤之回彈模數趨於定值。為了方便計算樁基礎受反覆側向作用力下之永久變形量及回彈變形量,本研究以動態三軸剪力試驗建立反覆作用力條件下之塑性應變與彈性應變關係,結合Kuo (2008)建立之勁度衰減模型,以及陳威廷(2021)之回彈勁度硬化模型,提出無凝聚性土壤於不同設計載重條件下之應力-應變反應變形模數計算建議,提供有限元素樁-土互制有限元素數值模型進行離岸風機基礎勁度計算應用。

    In the process of designing underwater foundations for offshore wind turbines, in order to establish an appropriate foundation stiffness matrix, analyzing the overall dynamic response under various design load combinations requires considering the foundation's force-deformation response under different loading conditions. For piled foundations embedded in cohesionless soil, when subjected to Ultimate Limit State (ULS) design loads, the lateral behavior of the pile foundation's force-deformation curve can be used to determine the stiffness, employing the secant slope of the force-deformation curve at the ULS design load level. The soil-pile interaction response can be obtained through static triaxial shear tests to determine the stress-strain curve. Under Serviceability Limit State (SLS) conditions, in addition to the applied loads, the permanent deformation due to repeated loading must be considered for pile foundations. In this case, the permanent plastic strain of the soil surrounding the pile under cyclic loading will be reflected in the slope of the stress-strain curve. For pile foundations subjected to Frequent Limit State (FLS) loads, the force-deformation response is nearly elastic. The elastic strain of the soil surrounding the pile under cyclic loading will be reflected in the modulus of resilience of the stress-strain curve. As the cyclic loading on the pile foundation increases, the modulus of resilience of the soil surrounding the pile stabilizes.To facilitate the calculation of permanent and resilient deformations of pile foundations under cyclic lateral loading, this study establishes the relationship between plastic and elastic strains under cyclic loading conditions using dynamic triaxial shear tests. This is combined with the stiffness degradation model proposed by Kuo (2008) and the resilient stiffness hardening model by Chen Wei-Ting (2021). The study proposes recommendations for calculating stress-strain response and deformation modulus of cohesionless soil under different design load conditions, providing guidance for the calculation of foundation stiffness in offshore wind turbine applications using finite element pile-soil interaction numerical models.

    目錄 摘要 i Extended Abstract ii 誌謝 xii 目錄 xiii 表目錄 xv 圖目錄 xvi 符號 xx 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 1 1-3 研究方法 2 1-4 研究架構 3 第二章 土壤勁度衰減與硬化模型 4 2-1 土壤模數 4 2-1-1 靜態載重下之土壤模數 5 2-1-2 動態載重下之土壤模數 6 2-2 土壤應變反應推估模型 7 2-2-1 土壤軸向塑性應變之推估式 14 2-2-2 土壤軸向回彈應變之推估式 17 2-3 土壤勁度衰減模型 20 2-4 土壤勁度硬化模型 24 第三章 試驗規劃與試體條件 27 3-1 試驗規劃流程 27 3-2 試驗土樣 28 3-2-1 土壤基本物性試驗 28 3-2-2 三軸試驗土壤試體條件 29 3-2-3 三軸試體製作方法 30 3-3 三軸壓密排水試驗條件 31 3-3-1 靜態三軸試驗條件 31 3-3-2 動態三軸試驗條件 33 第四章 試驗結果與分析 36 4-1 三軸剪力試驗成果 36 4-1-1 靜態三軸試驗結果 36 4-1-2 動態三軸試驗結果 40 4-2 參數求取 47 4-2-1 勁度衰減參數推估 47 4-2-2 回彈參數推估 54 4-2-3 回彈模數與割線模數之關係 60 4-3 回歸參數之敏感度分析 68 4-3-1 勁度衰減參數b1、b2敏感度分析 68 4-3-2 回彈推估參數c1、c2敏感度分析 72 第五章 分析成果比對 76 5-1 勁度衰減參數比對 76 5-2 回彈推估參數比對 78 第六章 結論與建議 80 6-1 結論 80 6-2 建議 80 參考文獻 81

    Achmus, M., Kuo, Y. S., and Abdel-Rahman, K. (2009). “Behavior of monopile foundations under cyclic lateral load.” Computers and Geotechnics, 36(5), (pp. 725-735).
    ASTM D854-14 (2015). ‘‘Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.’’ American Society for Testing and Materials, USA.
    ASTM D4253-14 (2015). ‘‘Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table.’’ American Society for Testing and Materials, USA.
    ASTM D4254-14 (2015). ‘‘Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.’’ American Society for Testing and Materials, USA.
    ASTM D7181-11 (2014). ‘‘Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils.’’ American Society for Testing and Materials, USA.
    Arnold, G., & Werkemeister, S. (2010). “Pavement thickness design charts derived from a rut depth finite element model ”(No. 427).
    AASHTO (2002). Guide for the design of new and rehabilitated pavement structures, National Cooperative Highway Research Program.
    BSH (2008). Standard Soil Investigations for Offshore Wind Farms. Federal Maritime and Hydrographic Agency of Germany (BSH); in German.
    Barksdale, R. D. “Laboratory Evaluation of Rutting in Base Course Materials. ” Proceedings of the 3rd International Conference on the Structural Design of Asphalt Pavements, London, September 11-15, 1972, Vol. 1, pp. 161-174.
    Cabalar, A. F., Dulundu, K., & Tuncay, K. (2013). Strength of various sands in triaxial and cyclic direct shear tests. Engineering Geology, 156, 92-102.
    Cai, Y., Sun, Q., Guo, L., Juang, C. H., & Wang, J. (2015). Permanent deformation characteristics of saturated sand under cyclic loading. Canadian Geotechnical Journal, 52(6), 795-807.
    Cai, Y., Chen, J., Cao, Z., Gu, C., & Wang, J. (2018). Influence of grain gradation on permanent strain of unbound granular materials under low confining pressure and high-cycle loading. International Journal of Geomechanics, 18(3), 04017156.
    Chen, W. B., Yin, J. H., Feng, W. Q., Borana, L., & Chen, R. P. (2018). “Accumulated Permanent Axial Strain of a Subgrade Fill under Cyclic High-Speed Railway Loading.” International Journal of Geomechanics, 18(5).
    Consoli, N. C., Heineck, K. S., Casagrande, M. D. T., & Coop, M. R. (2007). Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths. Journal of geotechnical and geoenvironmental engineering, 133(11), 1466-1469.
    Cai, Y., Gu, C., Wang, J., Juang, C. H., Xu, C., & Hu, X. (2013). One-way cyclic triaxial behavior of saturated clay: comparison between constant and variable confining pressure. Journal of Geotechnical and Geoenvironmental Engineering, 139(5), 797-809.
    Duncan, J. M., & Chang, C. Y. (1970). “Nonlinear analysis of stress and strain in soils. ” Journal of Soil Mechanics & Foundations Div.
    He, S. H., Ding, Z., Xia, T. D., Zhou, W. H., Gan, X. L., Chen, Y. Z., & Xia, F. (2020). Long-term behaviour and degradation of calcareous sand under cyclic loading. Engineering geology, 276, 105756.
    Hu, Z., Wang, R., Ren, X., Wei, X., & Wang, Q. (2019). Permanent deformation behavior of compacted loess under long-term traffic loading. Journal of Materials in Civil Engineering, 31(8), 04019157.
    Huurman, M. (1996). “Rut development in concrete block pavements due to permanent strain in the substructure.” In First international conference on concrete block paving, (pp. 293-303).
    Heukelom, W., & Klomp, A. (1962). “Dynamic testing as a means of controlling pavements during and after construction. ” In International Conference on the Structural Design of Asphalt PavementsUniversity of Michigan, Ann Arbor (Vol. 203, No. 1).
    Hicks, R. G. (1970). Factors influencing the resilient properties of granular materials. University of California, Berkeley.
    Indraratna, B., Biabani, M. M., & Nimbalkar, S. (2015). Behavior of geocell-reinforced subballast subjected to cyclic loading in plane-strain condition. Journal of Geotechnical and Geoenvironmental Engineering, 141(1), 04014081.
    Ishibashi, I. (1992). Discussion of “Effect of Soil Plasticity on Cyclic Response” by Mladen Vucetic and Ricardo Dobry (January, 1991, 117, (1),” Journal of Geotechnical Engineering , ASCE, Vol. 118, No. 5, (pp. 830-832).
    Jafarian, Y., & Javdanian, H. (2020). Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database. International Journal of Civil Engineering, 18(2), 245-249.
    Javdanian, H., & Jafarian, Y. (2018). Dynamic shear stiffness and damping ratio of marine calcareous and siliceous sands. Geo-Marine Letters, 38(4), 315-322.
    Jafarian, Y., Javdanian, H., & Haddad, A. (2018). Strain-dependent dynamic properties of Bushehr siliceous-carbonate sand: experimental and comparative study. Soil Dynamics and Earthquake Engineering, 107, 339-349.
    Kuo, Y.-S. (2008). “On the behavior of large-diameter piles under cyclic lateral load.” Ph.D. thesis, Lebniz Universität Hannover,Hannover, Heft 65.
    Kikumoto, M., Wood, D. M., & Russell, A. (2010). Particle crushing and deformation behaviour. Soils and foundations, 50(4), 547-563.
    Kondner, R. L. (1963). “A hyperbolic stressstrain formulation for sands. ” In Proc. 2nd Pan-American Conf. on SMFE (Vol. 1, pp. 289-324).
    Korkiala-Tanttu, L. (2009). “Calculation method for permanent deformation of unbound pavement materials. ” VTT.
    Kolisoja, P. (1997). “Resilient deformation characteristics of granular materials ”(pp. 188-201). Finland, Publications: Tampere University of Technology.
    Lin, B., Zhang, F., Feng, D., Tang, K., & Feng, X. (2017). Accumulative plastic strain of thawed saturated clay under long-term cyclic loading. Engineering Geology, 231, 230-237.
    Liu, Y., & Dai, F. (2021). A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1203-1230.
    Lee et al. (1997). “Resilient modulus of cohesive soils. ” J. Geotech. Geoenviron. Eng. 123(2) 131–136.
    Lackenby, J., Indraratna, B., McDowell, G., & Christie, D. (2007). Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Géotechnique, 57(6), 527-536.
    Lekarp, F., Isacsson, U., & Dawson, A. (2000). State of the art. I: “Resilient response of unbound aggregates. ” Journal of transportation engineering, 126(1), 66-75.
    M.R. Thompson, Q.L. Robnett (1979). “Resilient properties of subgrade soils.”, Transp.Eng. J. ASCE 105 (TE1) 71–89.
    Morgan, J. R. (1966). “The response of granular materials to repeated loading. ” Australian Road Research Board Proc.
    Monismith, C. L., Seed, H. B., Mitry, F. G., & Chan, C. (1967). “Predictions of pavement deflections from laboratory tests. ” In Second International Conference on the Structural Design of Asphalt PavementsUniversity of Michigan, Ann Arbor.
    Moore, W. M., Britton, S. C., and Schrivner, F. H. (1970). ‘‘A laboratory study of the relation of stress to strain for a crushed limestone base material.’’ Res. Rep. 99-5F, Study 2-8-65-99, Texas Transp. Inst., Texas A&M University, College Station, Tex.
    Pezo, R. F. (1993, January). “A general method of reporting resilient modulus tests of soils.”–A pavement engineer’s point of view. In 72nd Annual Meeting of the TRB.
    Sun, Q., Dong, Q., Cai, Y., & Wang, J. (2020). Modeling permanent strains of granular soil under cyclic loading with variable confining pressure. Acta Geotechnica, 15(6), 1409-1421.
    Sweere,(1990) G.T.H. “Unbound Granular Bases for Roads. Ph.D. dissertation. ” University of Delft, Delft, Netherlands.
    Seed, H. B., Mitry, F. G., Monismith, C. L., & Chan, C. K. (1967). “Prediction of flexible pavement deflections from laboratory repeated-load tests.” NCHRP Report, (35).
    Seed, B., and Lee, K. L. (1966). “Liquefaction of saturated sands during cyclic loading. ” Journal of Soil Mechanics & Foundations Div, 92(ASCE# 4972 Proceeding).
    T. Buu (1980). “Correlation of Resistance R-value and Resilient Modulus of Idaho Subgrade Soil.”, Idaho Department of Transportation, Division of Highways.
    Uzan, J. (1985). “Characterization of granular material. ” Transportation research record, 1022(1), 52-59.
    Wolff, H., and A. T. Visser,(1994). “Incorporating Elasto-Plasticity in Granular Pavement Design. ” Proceedings of the Institute of Civil Engineers, Transport 105. pp. 259-272.
    Wichtmann, T., Niemunis, A., & Triantafyllidis, T. (2005). “Strain accumulation in sand due to cyclic loading: drained triaxial tests. ” Soil Dynamics and Earthquake Engineering, 25(12), 967-979.
    Wichtmann, T., Niemunis, A., & Triantafyllidis, T. (2009). “Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. ” Soils and Foundations, 49(5), 711-728.
    Youd, T. L. (1970). “Densification and shear of sand during vibration. ” Journal of the Soil Mechanics and Foundations Division, 96(3), 863-880.
    盧泰維 (2018). “無凝聚性土壤於反覆作用力下之回彈行為研究,” 碩士, 國立成功大學, 台南市.
    林啓聖 (2020). “無凝聚性土壤於排水與不排水條件下受反覆外力作用之行為,” 博士, 國立成功大學, 台南市.
    陳威廷 (2021). “埋置於砂土層中之大口徑單樁基礎反覆加-卸載基礎勁度,” 碩士, 國立成功大學, 台南市.

    無法下載圖示 校內:2028-08-26公開
    校外:2028-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE