| 研究生: |
李沐融 Lee, Mu-Jung |
|---|---|
| 論文名稱: |
雙主頻波在線性剪力流中之三階解析解 Third-Order Analytical Solutions for Bichromatic Waves on Linearly Varying Currents |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 205 |
| 中文關鍵詞: | 雙主頻波 、非線性波 、剪力流 、旋性流 、渦度 |
| 外文關鍵詞: | Bichromatic wave, nonlinear wave, shear current, rotational flow, vorticity |
| 相關次數: | 點閱:163 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過攝動法展開有旋性流場在無黏性、不可壓縮的二維流體運動之控制方程式及邊界條件,推導出雙主頻波在線性剪力流中之三階解析解,其包含流函數、波浪運動之勢函數及水面位移函數。為處理有旋性流時自由液面動力邊界條件中無法消去的勢函數對時間偏微分項,引用Tsao (1959) 及 Kishida and Sobey (1988) 提出之概念,即在剪力流之渦旋量為一定值時,波浪運動可獨立以非旋性流處理。而透過第三階解中對兩波之角頻率作攝動法展開,在有流與渦度作用的情形下之振幅離散效應也可由解析解觀察出來。
本文所推導之三階解析解也退化到單主頻波或均勻流的情況,分別與陳與莊(1990)、Madsen and Fuhrman (2006) 及Kishida and Sobey (1988)之解作驗證。其退化後之數學表示式及水面位移函數與水平速度剖面的作圖皆顯示結果互相吻合。
另外,本文也透過推導出的解析解直接探討剪力流的流速與渦旋量對於波長、最大粒子運動速度等物理特性之影響。而非線性雙主頻波產生之束縛長波受流速與渦度的影響在本文中也有進一步的討論。
A third-order analytical solution for bichromatic waves on currents with constant vorticity is derived by using perturbation method. Unlike the derivation of monochromatic waves, moving-frame method cannot be used in the case of bichromatic waves because there are multiple waves with different celerities and the flow can in no way be steady-state. Also, for shear currents which is rotational flow, velocity potential cannot be defined. However, with the consideration of the wave part of the fluid motion remaining irrotational (Tsao, 1959 and Kishida and Sobey, 1988), some of the terms in the expanded boundary conditions can be ignored, thus the derivations can be further processed. As a result, the third-order explicit expressions of the stream function, the velocity potential and the surface elevation are obtained. The nonlinear dispersion relation is also derived to account for the interacting wave components with different frequencies and amplitudes.
The obtained solutions including the nonlinear dispersion relation are verified by reducing to those of previous results in the case of monochromatic waves and uniform currents of Chen and Juang (1990), Madsen and Fuhrman (2006) and Kishida and Sobey (1988). The comparisons between the solutions are shown to be in good agreements.
The influence of current velocity and vorticity on the wave characteristics such as wavelength and maximum particle velocity is illustrated. Comparisons between different wave and current conditions are also made. Finally, the influence of shear currents on the intensities of bound long wave components induced by the nonlinear wave-wave interaction of bichromatic waves are also discussed.
1. Battjes, J.A., Bakkenes, H.J., Janssen, T.T., van Dongeren, A.R., (2004). Shoaling of Subharmonic Gravity Waves. J. Geophys. Res., 109(C2), C02009.
2. Brevik, I., (1980). Flume Experiment on Waves and Current II. Smooth Bed. Coastal Engineering, 4, 89-110.
3. Chen, Y.Y., Juang, W.J., (1990). Primary Analysis on Wave-Current Interaction. Proc. 12th Conf. on Ocean Engineering in Republic of China, 248-265.
4. Chen, Y.Y., Juang, W.J., (1991). The Effects of Current on Wave Height Changement. Proc. 13th Conf. on Ocean Engineering in Republic of China, 352-364.
5. Christoffersen, J.B., (1982). Current Depth Refraction of Dissipative Water Waves. Institute of Hydrodynamics and Hydraulic Engineering (ISVA), Technical University of Denmark, Lyngby, Denmark.
6. Dalrymple, R.A., (1974). A Finite Amplitude Wave on a Linear Shear Current. Journal of Geophysical Research, 79, 4498-4504.
7. Dalrymple, R.A., (1974). Water Waves on a Bilinear Shear Current. Proc. 14th ASCE Coastal Engng. Conf. (Copenhagen, Denmark), 626-641.
8. Dalrymple, R.A., (1977). A Numerical Model for Periodic Finite Amplitude Waves on a Rotational Fluid. Journal of Computational Physics, 24(1), 29-42.
9. Dalrymple, R.A., (1980). Longshore Currents with Wave-Current Interaction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 109(1), 414-420.
10. Dalrymple, R.A., Dean, R.G., (1975).Waves of Maximum Height on Uniform Currents. Journal of the Waterways, Harbors and Coastal Engineering Division, 101(3), 259-268.
11. Dalrymple, R.A., Dean, R.G., (1984). Water Wave Mechanics for Engineers and Scientists.
12. Dingemans, M.W., (1997). Water Wave Propagation over Uneven Bottoms: Linear Wave Propagation.
13. Dong, G., Ma, X. Xu, J., Ma, Y., Wang, G. (2009). Experimental Study of the Transformation of Bound Long Waves over a Mild Slope with Ambient Currents. Coastal Engineering, 56, 1035-1042.
14. Janssen, T.T., Kamphuis, J.W., van Dongeren, A.R., Battjes, J.A., (2000). Observations of Long Waves on a Uniform Slope. Proc. 27th Int. Conf. Coastal Eng., Sydney, Australia, 2192-2205.
15. Janssen, T.T., Battjes, J.A., van Dongeren, A.R., (2003). Long Waves Induced by Short-Wave Groups over a Sloping Bottom. J. Geophys. Res.: Oceas, 108(C8), 3252.
16. Kishida, N., (1986). Nonlinear wave-current interaction. University of Clifornia, Berkeley.
17. Kishida, N., Sobey, R.J., Stokes Theory for Waves on Linear Shear Current. J. Eng. Mech., 114(8), 1317-1334.
18. Ko, D.S., DeFerrari, H.A., Malanotte-Rizzoli, P., (1989). Acoustic Tomography in the Florida Strait: Temperature, Current, and Vorticity Measurements, Journal of Geophysical Research: Oceans, 94(C5), 6197-6211.
19. Longuet-Higgins, M.S., Stewart, R.W., (1960). Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8(4), 565-583.
20. Longuet-Higgins, M.S., Stewart, R.W., (1961). The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, 10(4), 529-549.
21. Longuet-Higgins, M.S., Stewart, R.W., (1962). Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. Journal of Fluid Mechanics, 13(4), 481-504.
22. Longuet-Higgins, M.S., Stewart, R.W., (1964). Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Research and Oceanographic Abstracts, 11(4), 529-562.
23. Madsen, P.A., Fuhrman, D.R., (2006). Third-order theory for bichromatic bi-directional water waves. J. Fluid Mech., 557, 369-397.
24. Madsen, P.A., Fuhrman, D.R., (2012). Third-order theory for multi-directional irregular waves. J. Fluid Mech., 698, 304-334.
25. Masselink, G., (1995). Group Bound Long Waves as a Source of Infragravity Energy in the Surf Zone. Cont. Shelf. Res., 15(13), 1525-1547.
26. Peregrine, D.H., (1975). Stationary Gravity Waves on Non-Uniform Free Streams: Jet-Like Streams. Mathematical Proceeding of the Cambridge Philosophical Society, Cambridge, England, 77(2), 415-438.
27. Peregrine, D.H., (1976). Interaction of Water Waves and Currents. Advances in Applied Mechanics, 16, 9-117.
28. Peregrine, D.H., (1983). Annotated Bibliography on Wave-Current Interaction. MR 83-7. U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va.
29. Pierson, W.J., (1993). Oscillatory Third-Order Perturbation Solutions for Sums of Interacting Long-crested Stokes Waves on Deep Water. Journal of Ship Research, 37(4), 354-383.
30. Ruessink, B.G., (1998). Bound and Free Infragravity Waves in the Nearshore Zone under Breaking, Nonbreaking Conditions. J. Geophys. Res.: Oceans, 103(C6), 12795-12805.
31. Schlichting, H., (1968). Boundary-Layer Theory. McGraw-Hill, New York, 6th ed.
32. Sharma, J.N., Dean, R.G., (1981). Second-Order Directional Seas and Associated Wave Forces. Society of Petroleum Engineers Journal, 21(1), 129-140.
33. Thomas, G.P., (1979). Water Wave-Current Interactions: A Review. Mechanics of Wave-Induced Forces on Cylinders (ed. T. L. Show), Pitman, 179-203.
34. Tsao, S., (1959). Behavior of Surface Waves on a Linearly Varying Current. Moskov. Fiz.-Techn. Inst. Issted. Mekh. Prikl. Mat., 3, 66-84.
35. Zhang, J., Chen, L., (1999). General Third-Order Solutions for Irregular Waves in Deep Water. Journal of Engineering Mechanics, 125(7), 768-779.