簡易檢索 / 詳目顯示

研究生: 廖翊惟
Liao, Yi-Wei
論文名稱: 利用自我組織分子改善有機高分子光檢測器之特性
Characteristic of polymer photodetectors by using self-assembled monolayer treatment
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 83
中文關鍵詞: 有機光感測元件氧化鋅鎵自我組織分子氧化銦錫
外文關鍵詞: Organic photodetector, GZO, SAM, ITO
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討了利用自我組織分子(self-assembled molecule)對透明導電薄膜進行修飾改善有機高分子光感測器元件的特性,並比較各個自我組織分子處理之間元件特性。自我組織分子附著於電極表面後,會因為分子本身的電偶極矩,使得透明導電薄膜的功函數得以調變。藉由選擇不同官能基,改變分子電偶極矩方向與大小。在本實驗所使用的自我組織分子當中,我們得到以1H,1H,2H,2H-Perfluorooctanephosphonic acid (FOPA)處理氧化銦錫(ITO)是有效的。在處理時間上,相較於常見的長時間處理(24hr),我們發現在一分鐘的處理就有與長時間一樣的效果。其元件特性之外部量子效率(0V)為50%、暗電流比未處理的降低60%、感測度為未處理的1.7倍。在常用於電洞傳輸層PEDOT:PSS處理上,由於受到酸腐蝕的影響,暗電流為未處理的122倍,因此並不適合用於光感測元件上。我們同時也用氧化鋅鎵(GZO)進行元件的製作,發現在GZO的處理上2,3,4,5,6-Pentafluorobenzylphosphonic acid (FBPA)是有效的,其元件特性之外部量子效率(0V)為47%、暗電流比未處理降低62%、感測度為未處理的1.78倍。在經由PEDOT:PSS處理的GZO元件上,短路電流沒有如在ITO上有效的提升,主要是因為酸腐蝕的影響造成片電阻的上升使得元件特性下降。在本論文中,藉由SAM取代PEDOT:PSS,可以同時提升光電流以及減少暗電流,進而改善光感測器的元件特性。

    In this thesis, we have investigated the characteristics of polymer photodetector fabricated on transparent electrode which is treated by self-assembled molecule (SAM) treatment and we also compared the characteristics of each the devices. After the SAM attach on the surface of the transparent electrode, the work function of transparent electrode can be modulated due to the molecular dipole moment. By choosing different functional group of the SAM, the direction and magnitude of the dipole moment can be changed. We obtained the result that 1H,1H,2H,2H-Perfluorooctanephosphonic acid (FOPA) is useful for indium-tin oxide (ITO) from all of the SAMs used in this experiment. In processing time investigation, we obtained the same result between short time treatment and long time treatment (24hr) which is often seen in journal. The device with FOPA short time treatment modified on ITO has incident photon to current conversion efficiency (IPCE) 50% and the dark current was 60% reduced compared to non-treatment device. Furthermore, the detectivity was enhanced by 1.7 times. In the treatment of Poly (3,4-ethylendioxythiophene) dope with poly (4-styrenesulfonate) (PEDOT:PSS) which is often used as hole transport layer, the dark current was increased by 122 times due to the erosion of the ITO. Thus, the PEDOT:PSS was not suitable for organic photodetector fabrication. We also used the gallium-doped zinc oxide (GZO) substrate for device fabrication and found that the 2,3,4,5,6-Pentafluorobenzylphosphonic acid (FBPA) is useful for GZO. The device with modified on GZO has IPCE 47% and dark current was 62% reduced compared to non-treatment device. Furthermore, the detectivity was enhanced by 1.78 times. In the PEDOT:PSS based GZO devices, the short circuit current was not increased as in ITO. This might mainly due to the increase of the sheet resistance which was caused by hard erosion of the GZO. In this thesis, instead of PEDOT:PSS by using SAM, the photocurrent could be increased and the dark current could be decreased at the same time which results in the improved photodetector detectivity.

    摘 要 I Abstract III 致謝 V Content VI Table Captions IX Figure Captions XII Chapter 1 Introduction 1 1-1 Background and Motivation 1 1-2 Organization of Thesis 3 Chapter 2 Operation Principle 4 2-1 Mechanism of Organic Photodetector 4 2-2 Mechanism of the Charge Transport 6 2-2-1 Tunnel hopping 7 2-2-2 Thermal hopping 7 2-2-3 Variable-range-hopping 8 2-2-4 Poole-Frenkel current 8 2-2-5 Space Charge Limited Current (SCLC) 9 2-3 Organic Photodetector Characteristics 10 2-3-1 Dark Current Characteristics 10 2-3-2 Open-Circuit Voltage (Voc) 11 2-3-3 Short-Circuit Current Density (Jsc) 11 2-3-4 Fill Factor (FF) 12 2-3-5 Power Conversion Efficiency (PCE) 13 2-3-6 Incident photon to current conversion efficiency (IPCE) 13 2-3-7 Responsivity 13 2-3-8 Noise Equivalent Power and Detectivity 14 Chapter 3 Experiment 16 3-1 Material of Organic Photodetector 16 3-2 Process of Device Fabrication 17 3-2-1 Pre-Cleaning ITO and GZO substrates 18 3-2-2 Fabrication of ITO and GZO patterns 18 3-2-3 SAM treatment 19 3-2-4 Fabrication of Hole Transport Layer 19 3-2-5 Fabrication of Active Layer 20 3-2-6 Fabrication of Cathode 20 3-2-7 Sealing of the Device 20 3-3 Measurements 21 3-3-1 Current-Voltage measurement system 21 3-3-2 UV-Vis Absorption Spectrum 22 3-3-3 Photoluminescence Quantum Yield 22 3-3-4 Atomic Force Microscope 23 3-3-5 Incident Photon to Current Conversion 24 3-3-6 Surface Energy 24 3-3-7 Photoelectron Spectroscopy in Air 26 Chapter 4 Results and Discussions 27 4-1 Optical Properties of Transparent electrode 27 4-1-1 Transmittance of GZO and ITO 27 4-1-2 Transmittance of GZO and ITO modified by SAMs 27 4-1-3 Result of the Photoluminescence Quantum Yield (PLQY) 28 4-2 Effect on Processing Time of SAM 29 4-3 Effect of different SAM treatment on ITO 33 4-4 The comparison between non-treatment, FOPA and PEDOT:PSS on ITO 36 4-5 Effect of different SAM treatment on GZO 38 4-6 The comparison between non-treatment, FBPA and PEDOT:PSS on GZO 44 Chapter 5 Conclusion 47 Reference 49 Figures 55

    1. 安達千波矢 : 有機半導体のデバイス物性, 講談社(2012)
    2. Z. Chen, Q. Li, C. Chen, J. Du, J. Tong, X. Jin, Y. Li, Y. Yuan, Y. Qin, T. Wei and W. Sun, “ Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor in organic/inorganic hybrid solar cells,” Phys. Chem. Chem. Phys., 16, 24499 (2014)
    3. M. P. de Jong, L. J. Ijzendoorn, M. J. A. de Voigt, “ Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene) / poly(styrene-sulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77, 2255 (2000)
    4. T. Minami, “ Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol., 20, S35 (2005)
    5. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, “ Transparent, Conductive Carbon Nanotube Films,” Science, 305, 1273 (2004)
    6. E. Fortunato, V. Assuncao, A. Goncalves, A. Marques, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho and R. Martins, “ High quality conductive gallium-doped zinc oxide films deposited at room temperature,” Thin Solid Films, 451-452, 443 (2004)
    7. J. Owen, M. S. Son and K. –H. Yoo, “ Organic photovoltaic device with Ga-doped ZnO electrode,” Appl. Phys. Lett. 90, 033512 (2007)
    8. A. J. Heeger, “ Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials,” Rev. Mod. Phys., 73, 681 (2001)
    9. 上原 赫, 吉川 暹 監修 : 有機薄膜太陽電池の最新技術II, シーエムシー出版(2009)
    10. S. Barth and H. Bassler, “ Intrinsic photoconduction in PPV-type conjugated polymers,” Phys. Rev. Lett., 79, 4445 (1997)
    11. 時任靜士,安達千波矢,村田英幸 : 有機ELディスプレイ, オーム社(2004)
    12. Takatoshi Tsujimura : OLED Displays : Fundamentals and Applications, Wiley (2012)
    13. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2 % efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84, 3013 (2004)
    14. V. D. Mihailetchi, P. W. M. Mlom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar celld,” J. Appl. Phys. 94, 6849 (2003)
    15. C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. Mackenzie, and R. H. Friend, “The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices,” J.Appl. Phys. 92, 4266 (2002)
    16. T. Kietzke, S. A. M. Egbe, H.-H. Horhold, and D. Neher, “Comparatives study of M3EH-PPV based bilayer photovoltaic devices,” Macromolecules 39, 4018 (2006)
    17. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11, 374 (2001)
    18. A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganas, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84, 1609 (2004)
    19. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells- towards 10 % energy–conversion efficiency,” Adv. Mater. 18, 789 (2006)
    20. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, “Ideal diode equation for organic heterojunctions. I. derivation and application,” Phys. Rev. B 82, 155305 (2010)
    21. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull. 30, 28 (2005)
    22. J. Owen, M. S. Son and K. –H. Yoo, “ Organic photovoltaic device with Ga-doped ZnO electrode,” Appl. Phys. Lett. 90, 033512 (2007)
    23. S. O. Kasap : Optoelectronics and Photonics: Principles and Practices 2nd, PEARSON (2013)
    24. Website of Kanto Chemical: (http://www3.kanto.co.jp/catalog/msds/J_32435.PDF)
    25. W. Gao, L. Dickinson, C. Grozinger, F. C. Morin, and L. Reven, “Self-assembled monolayers of alkylphosphonic acids on metal oxides,” Langmuir 12, 6429 (1996)
    26. M. Textor, L. Ruiz, R. Hofer, A. Rossi, K. Feldman, G. Hahner, and N. D. Spencer, “Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces,” Langmuir 16, 3257 (2000)
    27. Website of Hamamatsu Photonics : (http://www.hamamatsu.com/jp/en/product/category/5001/5009/5033/C11347-11/index.html)
    28. D. Y. Kwok, A. W. Neumann, “Contact Angle Measurement and Contact Angle Interpretation,” Adv. Colloid Interface Sci., vol. 81,pp. 167, (1999)
    29. K. X. Ma, C. H. Ho, F. Zhu and T. S. Chung, “ Investigation of surface energy for organic light emitting polymers and indium tin oxide,” Thin Solid Films, 371, 140 (2000)
    30. 中島 章 著 : 固体表面の濡れ制御, 内田老鶴圃 (2007)
    31. D. K. Owens, R. C. Wendt, “ Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci. 13 1741 (1969)
    32. H. Hosono, “Recent progress in transparent oxide semiconductors: Materials and device application,” Thin Solid Films, 515, 6000 (2007)
    33. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88, 163502 (2006)
    34. J. H. Lim, D. K. Hwang, J. H. Yang, J. Y. Oh, E. J. Yang, and S. J. Park, “Highly efficiency white organic electroluminescent devices based on tandem architecture,” Appl. Phys. Lett., 87, 042109 (2005)
    35. D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D, 40, R387 (2007)
    36. M. S. Oh, D. K. Hwang, D. J. Seong, H. S. Hwang, S. J. Park, and E. D. Kim, “Improvement of Characteristics of Ga-Doped ZnO Grown by Pulsed Laser Deposition Using Plasma- Enhanced Oxygen Radicals,” J. Elctrochemical Society. 155 (9) D599 (2008)
    37. W. Cao, L. Dickinson, C. Grozinger, F. C. Morin, and L. Reven, “Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides,” Langmuir 12 6429 (1996)
    38. P. J. Hotchkiss, M. Malicki, A. J. Giordano, N. R. Armstrong and S. R. Marder, “Characterization of phosphonics acid binding to zinc oxide,” J. Mater. Chem., 21,3107 (2011)
    39. S. A. Paniagua, P. J. Hotchkiss, S. C. Jones, S. R. Marder, A. M. Mudalige, F. S. Marrikar, J. E. Perberton, and N. R. Armstrong, “ Phosphonic Acid Modification of Indium-Tin Oxide Electrodes : Combined XPS/UPS/Contact Angle Studies,” J. Phys. Chem. C, 112, 7809 (2008)
    40. J. A. Bardecker, H. Ma, T. Kim, F. Huang, M. S. Liu, Y. J. Cheng, G. Ting, and A. K. Y. Jen, “ Self-assembled Electroactive Phosphonic Acids on ITO : Maximizing Hole-Injection in Polymer Light-Emitting Diodes,” Adv. Funct. Mater., 18, 3964 (2008)
    41. A. Shama, B. Kippelen, P. J. Hotchkiss and S. R. Marder, “ Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes,” Appl. Phys. Lett. 93, 163308 (2008)
    42. W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim and Z. H. Kafafi, “ Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80, 3844 (2002)
    43. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “ High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” nature materials , 4, 864 (2005)
    44. 奥崎 秀典 監修 : PEDOT:PSSの材料物性とデバイス応用, サイエンス&テクノロジー (2012)
    45. M. Ramuz, L. Burgi, C. Winnewisser, P. Seitz, “ High sensitivity organic photodiodes with low dark currents and increased lifetimes,” Organic Electronics 9, 369 (2008)
    46. H. Li, E. L. Ratcliff, A. K. Sigdel, A. J. Giordano, S. R. Marder, J. J. Berry and J. L. Bredas, “ Modification of the Gallium-Doped Zinc Oxide Surface with Self-Assembled Monolayers of Phosphonic Acids: A Joint Theoretical and Experimental Study,” Adv. Funct. Mater., 24, 3593 (2014)
    47. B. Qi and J. Wang, “ Fill factor in organic solar cells,” Phys. Chem. Chem. Phys., 15, 8972 (2013)
    48. Website of Riken Keiki: (http://www.rkiinstruments.com/pages/AC2.htm)

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE