簡易檢索 / 詳目顯示

研究生: 張文輝
Chang, Wen-Hui
論文名稱: 骨膜的潛能對於骨癒合的影響 -體外實驗與動物實驗
The potential of periosteum in bone healing - in vitro study and animal study
指導教授: 王東堯
Wong, Tong-Yuo
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 112
中文關鍵詞: 骨母細胞截斷性骨缺陷骨膜細胞間質細胞
外文關鍵詞: segmental defect, osteoblast, periosteal cell, mesenchymal cell
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下顎骨常因腫瘤,外傷或先天性的缺陷需要做下顎骨截斷性手術,在下顎骨截斷性手術常需要骨移植體 ,而自體移植骨因有骨誘發性 (osteoinduction),骨傳導性 (osteoconduction),骨因性(osteogenesity), 因此常被認為是黃金標準 (golden standard)。在較大的骨缺陷中骨移植體是必要的1,可是在小的截斷性骨缺陷中是否需要骨移植體來改善癒合情形還有待更多的探討。根據最近組織工程的概念,骨膜已被視為骨組織癒合中極適當的骨形成材料2。在骨折或一些截斷性骨缺陷之病例中,骨組織癒合狀況有所差異,可能與骨膜破壞程度有關。一般認為骨膜內層含有間質細胞 ( mesenchymal cell ),而間質細胞可被誘導形成骨母細胞 ( osteoblast),骨母細胞進而修復骨缺損, 因此骨膜在骨癒合的過程中扮演了重要的角色。為了清楚地瞭解骨膜在對於較小的截斷性骨缺陷的影響,我們設計了本實驗來評估骨膜的潛能以及其對於下顎骨截斷性骨缺陷的影響。
    實驗分為體外實驗與動物實驗兩部份:在體外實驗上,我們從老鼠頭蓋骨分離骨膜後培養細胞至第三代,再分別以四種不同之骨性培養液培養14天,再以鹼性磷酸酶做定量與定性之測試。在動物實驗方面,使用八隻大於兩歲檢疫合格的母山羊 (female goat),體重 47.8~77.9公斤,平均62.9公斤,年齡2歲5個月~4歲6個月,平均 3歲6個月, 隨意分成下顎骨截斷缺陷一公分保留骨膜、下顎骨截斷缺陷一公分去除骨膜、下顎骨截斷缺陷兩公分保留骨膜及下顎骨截斷缺陷去除骨膜等四組,每組各兩隻。首先拔除左側下顎骨第一小臼齒及第二小臼齒,癒合一個月後在全身麻醉下施予下顎骨截斷性手術,癒合期間每隔一個月分別在腹膜施打骨螢光劑作為骨癒合標定,三個月後將羊犧牲,再以放射線影像,電腦斷層影像,組織學觀察2 (光學顯微鏡、螢光顯微鏡),觀察比較下顎骨癒合情況。
    骨膜細胞培養發現,在7天到14 天時,以成骨性培養基培養這組之鹼性磷酸酶/全蛋白質之比值有顯著性變化,顯示骨膜細胞有朝造骨細胞分化之現象發生;無論定性與定量檢測,也是以成骨性培養基培養這組表現最佳。在動物實驗方面,無論放射線影像,電腦斷層影像以及骨量、骨密度之統計,兩公分保留骨膜組之骨癒合情況顯著優於去除骨膜一組。本實驗之結果將可做為後續實驗以及臨床手術之參考。

    Under the situation of tumour surgeries, trauma, or deformity in mandibles, segmental defect is sometimes formed. Bone grafts are usually used during reconstruction of the defect especially in larger bone gap or critical size defects1. However, in smaller continuity defects, the use of bone grafts is not required. Based on modern concepts of tissue engineering, periosteum has gained attention as a suitable osteogenic material2. It is postulated that the periosteum has the capability of affecting bone healing in a variety of bone defect. It is vital in bone healing because it contains mesenchymal stem cell which could later differentiate into osteoblast for repairing bone defect. To address the roles of periosteum take in smaller continuity bone defect, a study was conducted to evaluate its potential in this regard. The objective of the study is to determine the involvement of periosteum in bone healing is divided into 2 parts, in vitro and animal study. The in vitro consists of isolation of periosteal cells from rat cranium and the culturing of periosteal cells in different osteogenic medium 14 days. ALPase stain was applied to the cell culture for qualitative observations. The animal study contained eight subjects (goat) weighing 62.9Kg and aged 42 months on average were prepared for the purpose of animal study. They were randomly assigned into 4 test groups differ in length of deformity (1cm and 2cm) and the presence / lack of periosteum on the deformity. The first and second premolar was extracted on the left mandible of all subjects in preparation for segmental surgery. Single injection of Doxycycline and Alizarin-complexon are applied intra-peritoneally as markers of new bone growth. The bone healing rates in each test groups were compared using X-Ray, Computer Tomography (CT), Histopathological Examination, Flurochrome Microscopy, and Statistical Observation (t-test). The in vitro experiment was founded in that there was a dramatic increase in ALPase per total protein indicating differentiation toward osteoblasts by periosteal cells. The effect of dexamethasone in growth medium had been noted to delay or decrease the rate of differentiation and proliferation of periosteal cells to bone forming cells.The animal studies demonstrated that periosteum is a crucial factor in healing of larger bone continuity deformity (2cm) of mandible.

    Abstract………………………………………………………… i Acknowledgement……………………………………………… v List of Tables…………………………………………………… 1 List of Figures………………………………………………… 2 Introduction…………………………………………………… 8 Review of Literature………………………………………… 10 Motivation & Objective………………………………………… 21 Material & Method……………………………………………… 22 Results………………………………………………………… 33 Discussions……………………………………………………… 50 Conclusions…………………………………………………… 57 References…………………………………………………… 58

    1. Goldberg V, Stevenson S. Shafer J. Biology of autografts and allografts. Bone and Cartilage allografts: Biology and clinical applications. Friedlaender GE, Goldberg VM ed. Park Ridge: American Academy of Orthopedic Surgeon, PP. 3-12; 1991
    2. Allen, M. R., Hock, J. M., Burr, D. B. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35: 1003–1012; 2004
    3. Solchaga L.A., Cassiede P., Caplan A.I. Different responses to osteo-inductive agents in bone marrow- and periosteum-derived cell preparations. Acta Orthop Scand 69 (4): 426-432; 1998
    4. Karaoglu, S., Baktir, A., Kabak, S., Arasi, H. Experimental repair of segmental bone defects in rabbits by demineralized allograft covered by free autogenous periosteum. Injury, Int. J. Care Injured 33, 679–683; 2002
    5. De Villa, G. H., Chen, C. T., Chen, Y. R. Spontaneous Bone Regeneration of the Mandible in an Elderly Patient: A Case Report and Review of the Literature. Chang Gung Med J 26: 363–369; 2003
    6. Martins, W. D., de Castro Avilla, L. F. Partial Spontaneous Bone Regeneration Subsequent to Mandibulectomy. J Contemp Dent Pract (5) 3: 108–120; 2004
    7. Pramono, C. Spontaneous Bone Regeneration after Mandible Resection in a Case of Ameloblastoma – A Case Report. Ann Acad Med Singapore 33(suppl): 59S–62S; 2004

    8. Petite, H., Viateau, V., Bensaid, W., Meunier, A., de Pollak, C., Bourguignon, M., Oudina, K., Sedel, L., Guillemin, G. Tissue-engineered bone regeneration. Nature Biotechnology 18: 959–963; 2000
    9. Gosain, A. K., Kalantarian, B., Song, L. S., Larson, J. D., Jenkins, C. A., Wilson, C. R. Comparison of Canine Mandibular Bone Regeneration by Distration Osteogenesis verus Acute Resection and Rigid External Fixation. Plast Rec Surg 114 (6); 2004
    10. Miwa Kanou, Takaaki Ueno, Toshimasa Kagawa, Toshimasa Kagawa, Yoshiro Sakata, Nobuhisa Ishida, Joji Fukunaga, Toshio Sugahara. Osteogenic Potential of Primed Periosteum Graft in the Rat Calvarial Model. Ann Plast Surg 54: 71-78; 2005
    11. Roberts, W. E., Turley, P. K., Breznick, N., Fielder, P. J. Implants: Bone physiology and metabolism. CDA J 15: 54–61; 1987
    12. Einhorn, T. A. The Cell and Molecular Biology of Fracture Healing. Clin Orthop 355(suppl): S7–S21; 1998
    13. Hohling, H. J., Barckhaus, R. H., Krefting, E. R., Quint P., Althoff, J. Quantitative electron microscopy of the early stages of cartilage mineralization. Metab Bone Dis Relat Res 1: 109-114; 1978
    14. Nicollz, S. B., Denker, A. E., Tuan, R. S. Mesenchymal cell-based repair of connective tissue defects: Application of transforming growth factor-βsuperfamily members and biodegradable polymer scaffolds. Cells and Materials 8: 99–122; 1998
    15. Marks, S. C., Hermey, D. C. Structure and development of bone. In: Bilezikian JP, Raisz LG, & Rodan GA (eds) Principles in bone biology. Academic Press, San Diego, p 3-14; 1996
    16. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747-754; 1997
    17. Otto F, Thornell AP, Crompton T, Denzel A et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771; 1997
    18. Mizuta, H., Sanya, A., Fukumoto, T., Fitzsimmons, J. S., Matsui, N., Bolander, M. E., Oursler, M. J., O’Driscoll, S. W. The spatiotemporal expression of TGF–β1 and its receptors during periosteal chondrogenesis in vitro. J Orthop Res 20(3): 562–574; 2002
    19. Burchardt H, Enneking WF: Transplantation of bone. Surg Clin North Am 58:403–427, 1978
    20. DePalma AF, Rothman RH, Lewinnek GE, et al. Anterior interbody fusion for severe cervical disc degeneration. Surg Gynecol
    Obstet 134:755–758, 1972
    21. Kaufman HH, Jones E. The principles of bony spinal fusion. Neurosurgery 24:264–270, 1989
    22. Prolo DJ: Biology of bone fusion. Clin Neurosurg 36: 135–146, 1990
    23. Malizos, K. N., Papatheodorou, L. K. The healing potential of the periosteum molecular aspects. Injury, Int. J. Care Injured 36 (suppl): S13–S19; 2005
    24. Zuo, Z. J., Zhu, J. Z. Study on the microstructures of skull fracture. Forensic Sci Int 50(1): 1–14; 1991
    25. Seto I, Tachikawa N, Mori M, Hoshino S, Marukawa E, Asahina I, Enomoto S. Restoration of occlusal function using osseointegrated implants in the canine mandible reconstructed by rhBMP-2 Clin. Oral Impl. Res, 13: 536–541; 2002
    26. Gerhart, T. N., Kirker-Head, C. A., Kriz, M. J., Holtrop, M. E., Hennig, G. E., Hipp, J., Schelling, S. H., and Wang, E. Healing Segmental Femoral Defects in Sheep Using Recombinant Human Bone Morphogenetic Protein. Clin. Orthop. 293: 317-326; 1993
    27. Perka, C., Schultz, O., Spitzer, R.S., Lindenhayn, K., Burmester, G. R., Sittinger, M. Segmental bone repair by tissue-engineered periosteal cell transplant with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21: 1145–1153; 2000
    28. Matthew, R. A., Janet, M. H., David, B. B. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35: 1003–1012; 2004
    29. Taylor, J. F. The periosteum and bone growth. In: Hall BK, editor. Bone Growth VI. Boca Raton: CRC Press; 1992
    30. Simon, T. M., Van Sickle, D. C., Kunishima, D. H., Jackson, D. W. Cambium cell stimulation from surgical release of the periosteum. J Orthop Res 21: 470–480; 2003
    31. Mach, D. B., Rogers, S. D., Sabino, M. C., Luger, N. M., Schwei, M. J., Pomonis, J. D., et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113: 155– 166; 2002
    32. Tonna, E. A., Cronkite, E. P. The periosteum. Autoradiographic studies on cellular proliferation and transformation utilizing tritiated thymidine. Clin Orthop 30: 218–233; 1963
    33. Ueno, T., Kagawa, T., Fukunaga, J. Mizukawa, N., Sugahara, T., Yamamoto, T. Evaluation of osteogenic / chondrogenic cellular proliferation and differentiation in the xenoeneic periosteal graft. Ann Plast Surg 48: 539–545; 2002
    34. Diaz-Flores, L., Gutierrez, R., Lopez-Alonso, A., Gonzalez, R., Varela, H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop 280– 286; 1992
    35. Bianco, P., Riminucci, M., Gronthos, S., Robey, P. G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19: 180– 192; 2001
    36. Reilly, T. M., Seldes, R., Luchetti, W., Brighton, C. T. Similarities in the phenotypic expression of pericytes and bone cells. Clin Orthop 95–103; 1998
    37. Ito, Y., Fitzsimmons, J. S., Sanyal, A., Mello, M. A., Mukherjee, N., O’Driscoll, S. W. Localization of chondrocyte precursors in periosteum. Osteoarthritis Cartilage 9: 215–223; 2003
    38. Brighton, C. T., Lorich, D. G., Kupcha, R., Reilly, T. M., Jones, A. R., Woodbury II, R. A. The pericyte as a possible osteoblast progenitor cell. Clin Orthop 287–99; 1992
    39. Ellender, G., Feik, S. A., Carach, B. J. Periosteal structure and development in a rat caudal vertebra. J Anat 158: 173–187; 1988
    40. Hutmacher, D. W. and Sittinger, M. Review: Periosteal Cells in Bone Tissue Engineering. Tissue Enginnering 9 (1)(suppl): S45–S64; 2003
    41. Nakahara, H., Bruder, S. P., Haynesworth, S. E., Holecek, J. J., Baber, M. A., Goldberg, V. M., Caplan, A. I. Bone and cartilage formation in diffusion chamber by subcultured cells derived from the periosteum. Bone 11 (3): 181–188; 1990
    42. De Bari, C., Dell’Accio, F., Vanlauwe, J., Eyckmans, J., Khan, I. M., Archer, C. W., Jones, E. A., McGonagle, D., Mitsiadis, T. A., Pitzalis, C., Luyten, F. P. Mesenchymal Multipotency of Adult Human Periosteal Cells Demonstrated by Single-Cell Lineage Analysis. Arthritis & Rheumatism 54 (4): 1209–1221; 2006
    43. Uddstromer, L. & Ritsila, V. Healing of membranous and long bone defects: An Experimental Study in Growing Rabbits. Scand J Plast Reconstr Surg 13: 281–287; 1979
    44. Kernek, C. B. & Wray, J. B. Cellular proliferation in the formation of fracture callus in the rat tibia. Clin Orthop 91 (197); 1973
    45. Uddstromer, L. The osteogenic capacity of tubular and membranous bone periosteum: A qualitative and quantitative experimental study in growing rabbits. Scand J Plast Reconstr Surg 12: 195–205; 1978
    46. Van den Wildenberg, F. A., Goris, R. J., Tutein Nolthenius-Puylaert, M. B. Free revascularised periosteum transplantation: an experimental study. Br J Plast Surg 37 (2): 226–235; 1984
    47. Takushima, A., Kitano, Y., Harii, K. Osteogenic Potential of Cultured Periosteal Cells in a Distracted Bone Gap in Rabbits. J Surg Res 78: 68–77; 1998
    48. Karaoglu, S., Baktir, A., Kabak, S., Arasi, H. Experimental repair of segmental bone defects in rabbits by demineralized allograft covered by free autogenous periosteum. Injury, Int. J. Care Injured 33, 679–683; 2002
    49. Ito, Y., Fitzsimmons, J. S., Sanyal, A., Mello, M. A., Mukherjee, N., O’Driscoll, S. W. Localization of chondrocyte precursors in periosteum. Osteoarthritis and Cartilage 9: 215–223; 2001
    50. Fang, J., Hall, B. K. In Vitro Differentitaion Potential of the Periosteal Cells from a Membrane Bone, the Quadratojugal of the Embryonic Chick. Developmental Biology 180: 701–712; 1996
    51. Owen, M. Cell population kinetics of an osteogenic tissue. The Journal of Cell Biology 19: 19–32; 1963
    52. Zhu, S. J., Choi, B. H., Huh, J. Y., Jung, J. H., Kim, B. Y., Lee, S. H. A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cell. Oral Surg Oral Med Oral Panthol Oral Radiol Endod 101: 164–169; 2006
    53. Redlich, A., Perka, C., Schultz, O., Spitzer, R., Haupl, T., Burmester, G. R., Sittinger, M. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. Journal of Materials Science: Materials In Medicine 10: 767–772; 1999
    54. Vukicevic, S., Luyten, F. P., Reddi, A. H. Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenin. Proc. Natl. Acad. Sci. U.S.A. 86(22): 8793 – 8797; 1989
    55. Iwasaki, M., Nakata, K., Nakahara, H., Nakase, T., Kimura T., Kimata, K., Caplan, A. I., Ono, K. Transforming growth factor –β1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cell. Endocrinology 132: 1603–1608; 1993
    56. Squier, C. A., S. Ghoneim, et al. "Ultrastructure of the periosteum from membrane bone." J Anat 171: 233-9; 1990.
    57. O'Driscoll, S. W., B. Meisami, et al. "Viability of periosteal tissue obtained postmortem." Cell Transplant 8(6): 611-6; 1999
    58. Caplan, A. I., G. Syftestad, et al. "The development of embryonic bone and cartilage in tissue culture." Clin Orthop Relat Res(174): 243-63; 1983
    59. Iwasaki, M., K. Nakata, et al. "Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells." Endocrinology 132(4): 1603-8; 1993
    60. Nakase, T., H. Nakahara, et al. "Clonal analysis for developmental potential of chick periosteum-derived cells: agar gel culture system." Biochem Biophys Res Commun 195(3): 1422-8; 1993
    61. Iwasaki, M., H. Nakahara, et al. "Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum-derived cells." J Bone Miner Res 9(8): 1195-204; 1994
    62. Decker, J. D., J. J. Marshall, et al. "Differential cell replication within the periosteum of the pig mandibular ramus." Acta Anat (Basel) 157(2): 144-50; 1996
    63. Aubin JE, Herbertson A. Osteoblast lineage in experimental animals. In:Beresford JN, Owen ME, editors. Marrow stromal cell culture. Cambridge:Cambridge University Press; 1998.
    64. Bellows, C. G., J. N. Heersche, et al. "Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro." Bone Miner 17(1): 15-29; 1992
    65. McCulloch, C. A., M. Strugurescu, et al. "Osteogenic progenitor cells in rat bone marrow stromal populations exhibit self-renewal in culture." Blood 77(9): 1906-11; 1991
    66. Locklin, R. M., M. C. Williamson, et al. "In vitro effects of growth factors and dexamethasone on rat marrow stromal cells." Clin Orthop Relat Res(313): 27-35; 1995
    67. Muraglia, A., I. Martin, et al. "A nude mouse model for human bone formation in unloaded conditions." Bone 22(5 Suppl): 131S-134S; 1998
    68. Solchaga, L. A., P. Cassiede, et al. "Different response to osteo-inductive agents in bone marrow- and periosteum-derived cell preparations." Acta Orthop Scand 69(4): 426-32; 1998
    69. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19: 180–92; 2001
    70. Reilly, T. M., Seldes, R., Luchetti, W., Brighton, C. T. Similarities in the phenotypic expression of pericytes and bone cells. Clin Orthop 95–103; 1998
    71. Lee, T. C., Mohsin, S., Taylor, D., Parkesh, R., Gunnlaugsson, T., O’Brien, F. J., Giehl, M., Gowin, W. Detecting microdamage in bone. J. Anat. 203: 161–172; 2003
    72. Liu, J. Y., Wang, D., Cheng, H. H. Experimental study of the osteogenic capacity of periosteal allografts: A preliminary report. Microsurgery 15: 87–92; 1994
    73. Knize, D. M. The influence of periosteum and calcitonin on onlay bone graft survival: A Roentgenographic Study. Plast Recons Surg 53 (2): 190–199; 1974
    74. O’Driscoll, S. W. M., Saris, D. B. F., Ito, Y., Fitzimmons, J. S. The chondrogenic potential of periosteum decreases with age. J Ortho. Res. 19: 95–103; 2001
    75. Nakase, T., Nakahara, H., Iwasaki, M., Kimura, T., Kimata, K., Watanabe, K., Caplan, A. I., Ono, K. Bioch Biophy Res Comm 195 (3): 1422–1428; 1993
    76. Terheyden, H., Wanke, P., Dunsche, A., Jepsen, S., Brenner, W., Palmie, S., Toth, C., Rueger, D. R. Mandibular reconstruction with prefabricated vascularized bone grafts using recombinant human osteogenic protein-1: an experimental study in miniature pigs. Part II: Transplantation. Int. J. Oral Maxillofac. Surg. 30: 469–478; 2001
    77. Bahrami, S., Stratmann, U., Wiesmann, H. P., Mokrys, K., Bruckner, P., Szuwart, T. Periosteally Derived Osteoblast-like Cells Differentiate into Chondrocytes in Suspension Culture in Agarose. The Anatomical Record: 259: 124–130; 2000
    78. Li, M., Amizuka, N., Oda, K., Tokunaga, K., Ito, T., Takeuchi, K., Takagi, R., Maeda, T. Histochemical Evidence of the Initial Chondrogenesis and Osteogenesis in the Periosteum of a Rib Fractured Model: Implications of Osteocyte Involvement in Periosteal Chondrogenesis. Microscopy Research and Technique 64: 330–342; 2004
    79. Ozaki, A., Tsunoda, M., Kinoshita, S., Saura, R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 5: 64–70; 2000
    80. Ritsila, V., Alhopura, S., Gylling, U., Rintala, A. The use of free periosteum for bone formation in congenital clefts of the maxilla: A preliminary report. Scand J Plast Reconstr Surg 6: 57–60; 1972

    下載圖示 校內:立即公開
    校外:2006-08-04公開
    QR CODE