簡易檢索 / 詳目顯示

研究生: 藍友駿
Lan, You-Jyun
論文名稱: 射頻濺鍍法製備 Y2Ti2O7電阻式記憶體元件之特性研究
Characterization of Y2Ti2O7-Based RRAM Devices Prepared by RF Sputtering
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: Y2Ti2O7射頻濺鍍法電阻式記憶體金屬後退火
外文關鍵詞: Y2Ti2O7, RF sputtering, RRAM, Post-metallization annealing (PMA)
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍法製備非晶Y2Ti2O7薄膜應用於電阻式隨機存取記憶體(Resistive-Random Access Memory, RRAM)元件,並探討其電阻轉換(Resistive Switching, RS)特性及進行阻抗分析,且著重研究薄膜厚度、上電極、沉積氣氛Ar/O2比、及退火溫度對RRAM元件性能的影響,所有樣品皆可展現出雙極電阻轉換行為,元件在低阻態電流傳導遵守歐姆導通機制,在高阻態遵守空間電荷限制電流傳導。進行金屬後退火處理能增強AlOx介面層的形成並改善電阻轉換特性,AlOx介面層能幫助防止氧離子通過界面向外擴散,本研究中製備的金屬後退火300℃元件開關次數可達2491次,且具有低的Set和Reset電壓分別為–1.5 V及0.88 V,與可辨認的記憶窗口其阻值開關比可大於10。

    The RRAM (Resistive Random-Access Memory) device structure prepared in this study consists of a metal-insulator-metal (MIM) configuration. The insulating layer is composed of amorphous Y2Ti2O7 thin films deposited by radio frequency sputtering. With ITO (Indium Tin Oxide) as the bottom electrode of the device, it can serve as the oxygen ion reservoir. In this experiment, different preparation conditions will be varied to deposit Y2Ti2O7 thin films in order to investigate their impact on the RRAM device characteristics, such as film thickness, top electrode material (Aluminum or Titanium), deposition atmosphere ratio of Ar/O2, annealing temperature, and post-metallization annealing treatment. The Al/Y2Ti2O7 (35min_PMA.300℃)/ITO device with the most favorable resistive switching characteristics in this study is fabricated under a pure Ar atmosphere. It possesses an appropriate concentration of oxygen vacancies, allowing the formation of conductive filaments. Additionally, the post-metallization annealing treatment results in the formation of a thicker AlOx interfacial layer, serving as the oxygen ion reservoir. This device exhibits a high endurance of 2491 resistive switching cycles and demonstrates low set and reset voltages of -1.5 V and 0.88 V, respectively. It also shows a recognizable memory window with a resistance ON/OFF ratio exceeding 10. The data retention time of the device reaches 104 seconds at 85°C, indicating its potential application in non-volatile memory devices.

    中文摘要 i 致謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 2 第二章 文獻回顧 4 2.1 Y2Ti2O7材料介紹 4 2.2 傳統及新型非揮發性記憶體介紹 5 2.2.1 快閃記憶體 (Flash Memory) 6 2.2.2 電阻式記憶體 (Resistive Random Access Memory, RRAM) 8 2.2.3 相變化記憶體 (Phase Change Random Access Memory, PCRAM) 8 2.2.4 磁阻式記憶體 (Magnetic Random Access Memory, MRAM) 9 2.2.5 鐵電記憶體 (Ferroelectric Random Access Memory, FeRAM) 11 2.3 電阻式隨機存取記憶體(RRAM)介紹 12 2.3.1 單極電阻轉換 (Unipolar Resistive Switching, URS) 15 2.3.2 雙極電阻轉換 (Bipolar Resistive Switching, BRS) 15 2.4 電阻轉換特性材料 16 2.4.1 無機材料 16 2.4.2 鈣鈦礦氧化物 18 2.4.3 有機材料 21 2.4.4 氧化石墨烯 24 2.5 電阻轉換機制 26 2.5.1 導電燈絲機制 (Conducting Filaments Mechanism) 26 2.5.2 熱化學機制 (Thermochemical Mechanism) 30 2.6 漏電流傳導機制 31 2.6.1 電極限制傳導機制 (Electrode-limited) 32 2.6.2 本體限制傳導機制 (Bulk-limited) 35 第三章 實驗步驟與方法 40 3.1 製程設備 40 3.1.1 射頻磁控濺鍍機 40 3.1.2 箱型高溫爐 41 3.1.3 管狀高溫爐 42 3.1.4 電子束蒸鍍機 42 3.2 實驗流程 43 3.2.1 使用藥品 44 3.2.2 材料與靶材製備 44 3.2.3 基板清洗 45 3.2.4 YTO薄膜濺鍍沉積 46 3.2.5 薄膜退火 (Annealing) 46 3.2.6 電子束蒸鍍上電極 46 3.2.7 金屬後退火 (Post-Metallization Annealing, PMA) 47 3.3 量測與分析設備 48 3.3.1 X光廣角繞射儀 (X-ray Diffractometer, XRD) 49 3.3.2 高解析掃描式電子顯微鏡 (High Resolution Scanning Electron Microscope, HR-SEM) 50 3.3.3 多功能原子力顯微鏡 (Atomic Force Microscope, AFM) 51 3.3.4 X光光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) 52 3.3.5 高解析穿透式電子顯微鏡 (Ultrahigh Resolution Transmission Electron Microscope, HR-TEM) 53 3.3.6 半導體參數分析儀 54 第四章 結果與討論 55 4.1 YTO濺鍍靶材之XRD分析 55 4.2 薄膜厚度不同元件之電阻轉換特性 56 4.2.1 YTO薄膜結晶性分析 56 4.2.2 YTO薄膜高解析圖像分析 57 4.2.3 電阻轉換特性分析 60 4.3 上電極不同元件之電阻轉換特性 67 4.4 濺鍍氣氛不同元件之電阻轉換特性 70 4.4.1 薄膜分析 70 4.4.2 電阻轉換特性分析 73 4.5 退火溫度不同元件之電阻轉換特性 79 4.5.1 薄膜分析 79 4.5.2 電阻轉換特性分析 85 4.6 金屬後退火元件之電阻轉換特性 89 4.6.1 薄膜分析 89 4.6.2 電阻轉換特性分析 92 4.7 導電燈絲模型 100 4.8 元件導通機制 104 4.9 比較與討論 108 第五章 結論 110 參考文獻 111

    [1] H. Wang, X. Yan, Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects, physica status solidi (RRL)–Rapid Research Letters, 13 (2019) 1900073.
    [2] R. Khan, N. Ilyas, M.Z.M. Shamim, M.I. Khan, M. Sohail, N. Rahman, A.A. Khan, S.N. Khan, A. Khan, Oxide-based resistive switching-based devices: fabrication, influence parameters and applications, Journal of Materials Chemistry C, 9 (2021) 15755-15788.
    [3] Z. Shen, C. Zhao, Y. Qi, W. Xu, Y. Liu, I.Z. Mitrovic, L. Yang, C. Zhao, Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application, Nanomaterials, 10 (2020) 1437.
    [4] H.-J. Kim, D.-W. Kim, W.-Y. Lee, K. Kim, S.-H. Lee, J.-H. Bae, I.-M. Kang, K. Kim, J. Jang, Flexible Sol-Gel—Processed Y2O3 RRAM Devices Obtained via UV/Ozone-Assisted Photochemical Annealing Process, Materials, 15 (2022) 1899.
    [5] L. Hu, W. Han, H. Wang, Resistive switching and synaptic learning performance of a TiO2 thin film based device prepared by sol–gel and spin coating techniques, Nanotechnology, 31 (2020) 155202.
    [6] M.A.U. Khalid, S.W. Kim, J. Lee, A.M. Soomro, M.M. Rehman, B.-G. Lee, K.H. Choi, Resistive switching device based on SrTiO3/PVA hybrid composite thin film as active layer, Polymer, 189 (2020) 122183.
    [7] W. Ma, S. Lin, J. Luo, X. Zhang, Y. Wang, Z. Li, B. Wang, Y. Zheng, Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer, Applied Physics Letters, 103 (2013) 262903.
    [8] C.-R. Cheng, M.-H. Tsai, T.-H. Hsu, M.-J. Li, C.-L. Huang, Resistive switching characteristics and mechanism of lanthanum yttrium oxide (LaYO3) films deposited by RF sputtering for RRAM applications, Journal of Alloys and Compounds, 930 (2023) 167487.
    [9] A. Ohta, Y. Goto, M.F. Kazalman, G. Wei, H. Murakami, S. Higashi, S. Miyazaki, The Impact of Y Addition into TiO2 on Electronic States and Resistive Switching Characteristics, Japanese Journal of Applied Physics, 50 (2011) 06GG01.
    [10] G. Ou, W. Liu, L. Yao, H. Wu, W. Pan, High conductivity of La2Zr2O7 nanofibers by phase control, Journal of Materials Chemistry A, 2 (2014) 1855-1861.
    [11] E. Öztürk, E. Sarılmaz, The investigation of the photoluminescent and piezoelectric effect of Eu3+ doped Y2Ti2O7 and Sm2Ti2O7 host crystals, Materials Chemistry and Physics, 239 (2020) 122085.
    [12] M. Suganya, K. Ganesan, P. Vijayakumar, A.S. Gill, R. Ramaseshan, S. Ganesamoorthy, Structural, optical and mechanical properties of Y2Ti2O7 single crystal, Scripta Materialia, 187 (2020) 227-231.
    [13] D. Xue, H. Song, X. Zhong, J. Wang, N. Zhao, H. Guo, P. Cong, Flexible resistive switching device based on the TiO2 nanorod arrays for non-volatile memory application, Journal of Alloys and Compounds, 822 (2020) 153552.
    [14] Z. Guo, Y. Zhu, J. Zhou, X. Ma, L. Wang, M. Chen, Y. Liu, R. Xiong, Z. Wang, C. Zuo, Tuning oxygen vacancies and resistive switching behaviors in amorphous Y2O3 film-based memories, Journal of Alloys and Compounds, 923 (2022) 166399.
    [15] B. Singh, A. Parchur, R. Singh, A. Ansari, P. Singh, S. Rai, Structural and up-conversion properties of Er3+ and Yb3+ co-doped Y2Ti2O7 phosphors, Physical Chemistry Chemical Physics, 15 (2013) 3480-3489.
    [16] Q. Deng, R. Gao, X. Li, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Hydrogenative ring-rearrangement of biobased furanic aldehydes to cyclopentanone compounds over Pd/pyrochlore by introducing oxygen vacancies, ACS Catalysis, 10 (2020) 7355-7366.
    [17] N.M. Cepeda-Sánchez, J.A. Díaz-Guillén, M. Maczka, U. Amador, A.F. Fuentes, Cations size mismatch versus bonding characteristics: synthesis, structure and oxygen ion conducting properties of pyrochlore-type lanthanide hafnates, Journal of materials science, 53 (2018) 13513-13529.
    [18] Z. Wang, G. Zhou, D. Jiang, S. Wang, Recent development of A2B2O7 system transparent ceramics, Journal of Advanced Ceramics, 7 (2018) 289-306.
    [19] Q.-F. Ou, B.-S. Xiong, L. Yu, J. Wen, L. Wang, Y. Tong, In-memory logic operations and neuromorphic computing in non-volatile random access memory, Materials, 13 (2020) 3532.
    [20] C.-Y. Lu, K.-Y. Hsieh, R. Liu, Future challenges of flash memory technologies, Microelectronic engineering, 86 (2009) 283-286.
    [21] R. Micheloni, L. Crippa, A. Marelli, G. Wong, Market and applications for NAND Flash memories, Inside NAND Flash Memories, (2010) 1-18.
    [22] J.-S. Lee, Nano-floating gate memory devices, Electronic Materials Letters, 7 (2011) 175-183.
    [23] H. Gordon, J. Edmonds, S. Ghandali, W. Yan, N. Karimian, F. Tehranipoor, Flash-based security primitives: evolution, challenges and future directions, Cryptography, 5 (2021) 7.
    [24] C. Liu, Q. Tang, Y. Zheng, J. Zhao, W. Song, Y. Cheng, Effect of vacancy ordering on the grain growth of Ge2Sb2Te5 film, Nanotechnology, (2023).
    [25] S. Hatayama, Y. Sutou, S. Shindo, Y. Saito, Y.-H. Song, D. Ando, J. Koike, Inverse resistance change Cr2Ge2Te6-based PCRAM enabling ultralow-energy amorphization, ACS applied materials & interfaces, 10 (2018) 2725-2734.
    [26] R. Jeyasingh, J. Liang, M.A. Caldwell, D. Kuzum, H.-S.P. Wong, Phase change memory: Scaling and applications, in: Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, IEEE, 2012, pp. 1-7.
    [27] T. Nozaki, T. Yamamoto, S. Miwa, M. Tsujikawa, M. Shirai, S. Yuasa, Y. Suzuki, Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM, Micromachines, 10 (2019) 327.
    [28] T. Hadámek, S. Selberherr, W. Goes, V. Sverdlov, Modeling thermal effects in STT-MRAM, Solid-State Electronics, 200 (2023) 108522.
    [29] L. Zhang, W. Kang, Y. Zhang, Y. Cheng, L. Zeng, J.-O. Klein, W. Zhao, Channel modeling and reliability enhancement design techniques for STT-MRAM, in: 2015 IEEE Computer Society Annual Symposium on VLSI, IEEE, 2015, pp. 461-466.
    [30] M. Guo, J. Jiang, J. Qian, C. Liu, J. Ma, C.W. Nan, Y. Shen, Flexible robust and high‐density FeRAM from array of organic ferroelectric nano‐lamellae by self‐assembly, Advanced Science, 6 (2019) 1801931.
    [31] L. Grenouillet, T. Francois, J. Coignus, N. Vaxelaire, C. Carabasse, F. Triozon, C. Richter, U. Schroeder, E. Nowak, Performance assessment of BEOL-integrated HfO2-based ferroelectric capacitors for FeRAM memory arrays, in: 2020 IEEE Silicon Nanoelectronics Workshop (SNW), IEEE, 2020, pp. 5-6.
    [32] P. Sharma, T.S. Moise, L. Colombo, J. Seidel, Roadmap for ferroelectric domain wall nanoelectronics, Advanced Functional Materials, 32 (2022) 2110263.
    [33] R. Khosla, S.K. Sharma, Integration of ferroelectric materials: An ultimate solution for next-generation computing and storage devices, ACS Applied Electronic Materials, 3 (2021) 2862-2897.
    [34] P.-Y. Chen, S. Yu, Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design, IEEE Transactions on Electron Devices, 62 (2015) 4022-4028.
    [35] H. Li, S. Wang, X. Zhang, W. Wang, R. Yang, Z. Sun, W. Feng, P. Lin, Z. Wang, L. Sun, Memristive crossbar arrays for storage and computing applications, Advanced Intelligent Systems, 3 (2021) 2100017.
    [36] D.J. Wouters, R. Waser, M. Wuttig, Phase-change and redox-based resistive switching memories, Proceedings of the IEEE, 103 (2015) 1274-1288.
    [37] E. Carlos, R. Branquinho, R. Martins, A. Kiazadeh, E. Fortunato, Recent progress in solution‐based metal oxide resistive switching devices, Advanced materials, 33 (2021) 2004328.
    [38] Y. Ahn, J. Jang, J.Y. Son, Resistive switching characteristics and conducting nanobits of polycrystalline NiO thin films, Journal of Electroceramics, 38 (2017) 100-103.
    [39] C. Wang, B. Song, Z. Zeng, Excellent selector performance in engineered Ag/ZrO2: Ag/Pt structure for high-density bipolar RRAM applications, AIP Advances, 7 (2017).
    [40] J. Park, S. Kim, Improving endurance and reliability by optimizing the alternating voltage in Pt/ZnO/TiN RRAM, Results in Physics, 39 (2022) 105731.
    [41] B. Ku, Y. Abbas, A.S. Sokolov, C. Choi, Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors, Journal of Alloys and Compounds, 735 (2018) 1181-1188.
    [42] N. Sedghi, H. Li, I. Brunell, K. Dawson, R. Potter, Y. Guo, J. Gibbon, V. Dhanak, W. Zhang, J. Zhang, The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM, Applied Physics Letters, 110 (2017).
    [43] S. Lamichhane, S. Sharma, M. Tomar, A. Chowdhuri, Effect of variation in glancing angle deposition on resistive switching property of WO3 thin films for RRAM devices, Journal of Applied Physics, 132 (2022) 134102.
    [44] D.C. Gilmer, G. Bersuker, Fundamentals of metal-oxide resistive random access memory (RRAM), Semiconductor Nanotechnology: Advances in Information and Energy Processing and Storage, (2018) 71-92.
    [45] J. Hazra, M. Liehr, K. Beckmann, S. Rafiq, N. Cady, Impact of Atomic Layer Deposition Co-Reactant Pulse Time on 65nm CMOS Integrated Hafnium Dioxide-based Nanoscale RRAM Devices, in: 2020 IEEE International Integrated Reliability Workshop (IIRW), IEEE, 2020, pp. 1-4.
    [46] G. Du, H. Li, Q. Mao, Z. Ji, Controllable volatile to nonvolatile resistive switching conversion and conductive filaments engineering in Cu/ZrO2/Pt devices, Journal of Physics D: Applied Physics, 49 (2016) 445105.
    [47] Y. Wang, Z. Lv, L. Zhou, X. Chen, J. Chen, Y. Zhou, V. Roy, S.-T. Han, Emerging perovskite materials for high density data storage and artificial synapses, Journal of Materials Chemistry C, 6 (2018) 1600-1617.
    [48] Z. Yan, J.-M. Liu, Resistance switching memory in perovskite oxides, Annals of Physics, 358 (2015) 206-224.
    [49] F. Lv, C. Gao, P. Zhang, C. Dong, C. Zhang, D. Xue, Bipolar resistive switching behavior of CaTiO3 films grown by hydrothermal epitaxy, RSC Advances, 5 (2015) 40714-40718.
    [50] Y. Chen, L. Zhang, Y. Zhang, H. Gao, H. Yan, Large-area perovskite solar cells–a review of recent progress and issues, RSC advances, 8 (2018) 10489-10508.
    [51] M.K. Rahmani, S.A. Khan, M.F. Khan, M.H. Kang, Fully solution-processed organic RRAM device with highly stable butterfly-shaped hysteresis, Materials Science and Engineering: B, 282 (2022) 115784.
    [52] C.-J. Lee, Y.-C. Chang, L.-W. Wang, Y.-H. Wang, Nonvolatile resistive switching memory utilizing cobalt embedded in gelatin, Materials, 11 (2017) 32.
    [53] Z.X. Lim, K.Y. Cheong, Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices, Physical Chemistry Chemical Physics, 17 (2015) 26833-26853.
    [54] S.P. Park, Y.J. Tak, H.J. Kim, J.H. Lee, H. Yoo, H.J. Kim, Analysis of the bipolar resistive switching behavior of a biocompatible glucose film for resistive random access memory, Advanced Materials, 30 (2018) 1800722.
    [55] Y. Xing, B. Sueoka, K.Y. Cheong, F. Zhao, Nonvolatile resistive switching memory based on monosaccharide fructose film, Applied Physics Letters, 119 (2021).
    [56] Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu, Y.-K. Su, Nonvolatile bio-memristor fabricated with egg albumen film, Scientific reports, 5 (2015) 10022.
    [57] B. Sueoka, A.Y. Vicenciodelmoral, M.M.H. Tanim, X. Zhao, F. Zhao, Correlation of natural honey-based RRAM processing and switching properties by experimental study and machine learning, Solid-State Electronics, 197 (2022) 108463.
    [58] B. Mu, H.-H. Hsu, C.-C. Kuo, S.-T. Han, Y. Zhou, Organic small molecule-based RRAM for data storage and neuromorphic computing, Journal of Materials Chemistry C, 8 (2020) 12714-12738.
    [59] H.-H. Choi, M. Kim, J. Jang, K.H. Lee, J.Y. Jho, J.H. Park, Tip-enhanced electric field-driven efficient charge injection and transport in organic material-based resistive memories, Applied Materials Today, 20 (2020) 100746.
    [60] H.-S. Choi, J. Lee, B. Kim, J. Lee, B.-G. Park, Y. Kim, S.W. Hong, Highly-packed self-assembled graphene oxide film-integrated resistive random-access memory on a silicon substrate for neuromorphic application, Nanotechnology, 33 (2022) 435201.
    [61] Z. Shen, C. Zhao, C. Zhao, I. Mitrovic, L. Yang, W. Xu, E. Lim, T. Luo, Y. Huang, Al/GO/Si/Al RRAM with Solution-processed GO dielectric at Low Fabrication Temperature, in: 2019 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), IEEE, 2019, pp. 1-4.
    [62] S. Mei, M. Bosman, R. Nagarajan, X. Wu, K.L. Pey, Compliance current dominates evolution of NiSi2 defect size in Ni/dielectric/Si RRAM devices, Microelectronics Reliability, 61 (2016) 71-77.
    [63] G. Pedretti, D. Ielmini, In-memory computing with resistive memory circuits: Status and outlook, Electronics, 10 (2021) 1063.
    [64] S. Wei, B. Gao, D. Wu, J. Tang, H. Qian, H. Wu, Trends and challenges in the circuit and macro of RRAM-based computing-in-memory systems, Chip, (2022) 100004.
    [65] Y. Li, S. Long, Q. Liu, H. Lv, M. Liu, Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two‐dimensional layered materials, Small, 13 (2017) 1604306.
    [66] M. Sowinska, In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM, in, BTU Cottbus-Senftenberg, 2014.
    [67] A. Hao, M. Ismail, S. He, N. Qin, W. Huang, J. Wu, D. Bao, Ag-NPs doping enhanced resistive switching performance and induced changes in magnetic properties of NiFe2O4 thin films, RSC advances, 7 (2017) 46665-46677.
    [68] E.W. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey, Electronics, 4 (2015) 586-613.
    [69] F.-C. Chiu, A review on conduction mechanisms in dielectric films, Advances in Materials Science and Engineering, 2014 (2014).
    [70] Z. Liang, A comprehensive understanding of conductive mechanism of RRAM: from electron conduction to ionic dynamics, in: 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), IEEE, 2020, pp. 1-6.
    [71] A. Gehring, S. Selberherr, Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices, IEEE Transactions on Device and Materials Reliability, 4 (2004) 306-319.
    [72] M.S. Safavi, M.A. Surmeneva, R.A. Surmenev, J. Khalil-Allafi, RF-magnetron sputter deposited hydroxyapatite-based composite & multilayer coatings: A systematic review from mechanical, corrosion, and biological points of view, Ceramics International, 47 (2021) 3031-3053.
    [73] D. Maurya, A. Sardarinejad, K. Alameh, Recent developments in RF Magnetron sputtered thin films for pH sensing applications—an overview, Coatings, 4 (2014) 756-771.
    [74] A. Bashir, T.I. Awan, A. Tehseen, M.B. Tahir, M. Ijaz, Chapter 3—Interfaces and Surfaces, Chemistry of Nanomaterials; Awan, TI, Bashir, A., Tehseen, A., Eds, (2020) 51-87.
    [75] M. Wang, H. Lv, Q. Liu, Y. Li, Z. Xu, S. Long, H. Xie, K. Zhang, X. Liu, H. Sun, Investigation of One-Dimensional Thickness Scaling on Cu/HfOx/Pt Resistive Switching Device Performance, IEEE electron device letters, 33 (2012) 1556-1558.
    [76] Z. Zhang, K. Gu, X. Zhou, H. Huang, J. Huang, K. Tang, J. Zhang, M. Liao, L. Wang, Resistance random access memory performance of MgZnO-based device with varying film thickness by an asymmetric electrode of Au/ITO, Materialia, 15 (2021) 101001.
    [77] S.-K. Tong, J.-H. Chang, Y.-H. Hao, M.-R. Wu, D.-H. Wei, Y.-L. Chueh, Optimum resistive switching characteristics of NiFe2O4 by controlling film thickness, Applied Surface Science, 564 (2021) 150091.
    [78] H.-D. Kim, H.-M. An, K.C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E.B. Lee, T.G. Kim, Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells, Semiconductor Science and Technology, 25 (2010) 065002.
    [79] K.-J. Lee, L.-W. Wang, T.-K. Chiang, Y.-H. Wang, Effects of electrodes on the switching behavior of strontium titanate nickelate resistive random access memory, Materials, 8 (2015) 7191-7198.
    [80] L. Xia, X. Fang, X. Xu, Q. Liu, M. Yang, J. Xu, Z. Gao, X. Wang, The promotional effects of plasma treating on Ni/Y2Ti2O7 for steam reforming of methane (SRM): Elucidating the NiO-support interaction and the states of the surface oxygen anions, International Journal of Hydrogen Energy, 45 (2020) 4556-4569.
    [81] W. Chen, S. Kuang, Z. Liu, H. Fu, Q. Yun, D. Xu, H. Hu, X. Yu, Y-doped Li4Ti5-xYxO12 with Y2Ti2O7 surface modification anode materials: Superior rate capability and ultra long cyclability for half/full lithium-ion batteries, Journal of Alloys and Compounds, 835 (2020) 155327.
    [82] T. Chen, S.-Y. Liu, Q. Xie, C. Detavernier, R. Van Meirhaeghe, X.-P. Qu, The effects of deposition temperature and ambient on the physical and electrical performance of DC-sputtered n-ZnO/p-Si heterojunction, Applied Physics A, 98 (2010) 357-365.
    [83] Y.-T. Chen, T.-H. Hsu, C.-L. Huang, Resistive switching properties of amorphous Sm2Ti2O7 thin film prepared by RF sputtering for RRAM applications, Journal of Alloys and Compounds, 910 (2022) 164960.
    [84] B. Sun, P. Wang, B. Ma, J. Deng, J. Luo, Effects of annealing on the temperature coefficient of resistance of nickel film deposited on polyimide substrate, Vacuum, 160 (2019) 18-24.
    [85] T. Huang, Y. Zhang, H. Liu, R. Tao, C. Luo, Y. Li, C. Chang, X. Lu, T. Minari, J. Liu, Interface scattering dominated carrier transport in hysteresis-free amorphous InGaZnO thin film transistors with high-k HfAlO gate dielectrics by atom layer deposition, Semiconductor Science and Technology, 37 (2021) 025005.
    [86] F.H. Alshammari, P.K. Nayak, Z. Wang, H.N. Alshareef, Enhanced ZnO thin-film transistor performance using bilayer gate dielectrics, ACS Applied Materials & Interfaces, 8 (2016) 22751-22755.
    [87] S. Ha, H. Lee, W.-Y. Lee, B. Jang, H.-J. Kwon, K. Kim, J. Jang, Effect of annealing environment on the performance of sol–gel-processed ZrO2 RRAM, Electronics, 8 (2019) 947.
    [88] S.W. Han, M.W. Shin, UV-laser annealing for improved resistive switching performance and reliability of flexible resistive random-access memory, Journal of Alloys and Compounds, 908 (2022) 164658.
    [89] C.-C. Hsu, H. Chuang, W.-C. Jhang, Annealing effect on forming-free bipolar resistive switching characteristics of sol-gel WOx resistive memories with Al conductive bridges, Journal of Alloys and Compounds, 882 (2021) 160758.
    [90] K. Shi, H. Xu, Z. Wang, X. Zhao, W. Liu, J. Ma, Y. Liu, Improved performance of Ta2O5−x resistive switching memory by Gd-doping: Ultralow power operation, good data retention, and multilevel storage, Applied Physics Letters, 111 (2017) 223505.
    [91] C. Sun, S. Lu, F. Jin, W. Mo, J. Song, K. Dong, Control the switching mode of Pt/HfO2/TiN RRAM devices by tuning the crystalline state of TiN electrode, Journal of Alloys and Compounds, 749 (2018) 481-486.
    [92] T.-M. Pan, K.-M. Chen, C.-H. Lu, Resistive Switching Behavior in the Ru/Y2O3/TaN Nonvolatile Memory Device, Electrochemical and Solid-State Letters, 14 (2010) H27.
    [93] V. Prusakova, C. Collini, M. Nardi, R. Tatti, L. Lunelli, L. Vanzetti, L. Lorenzelli, G. Baldi, A. Chiappini, A. Chiasera, The development of sol–gel derived TiO2 thin films and corresponding memristor architectures, RSC advances, 7 (2017) 1654-1663.
    [94] Y. Wang, W.-J. Chen, X.-Y. Zhang, W.-J. Ma, B. Wang, Y. Zheng, Highly reliable bipolar resistive switching in sol-gel derived lanthanum-doped PbTiO3 thin film: Coupling with ferroelectricity?, Acta Mechanica Sinica, 30 (2014) 526-532.
    [95] L. Wei, C. Jia, W. Zhang, Distinguish and control the multi-level resistive switching for ferroelectric layer and interface in a YMnO3/Nb:SrTiO3 device, RSC Advances, 6 (2016) 1445-1451.

    無法下載圖示 校內:2028-07-25公開
    校外:2028-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE