| 研究生: |
鄭安修 Cheng, An-Hsiu |
|---|---|
| 論文名稱: |
以UV-Ozone處理溶液式製程之鈦酸鋇薄膜及其應用於氧化銦鎵鋅薄膜電晶體介電層之探討 Investigations of Solution-Processed BaTiO3 Thin Films with UV-Ozone Treatment and Its Applications as the Dielectric Layers of Indium Gallium Zinc Oxide Thin Film Transistors |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 薄膜電晶體 、閘極介電層 、鈦酸鋇 、溶膠凝膠法 、低溫 、UV-ozone |
| 外文關鍵詞: | TFT, gate dielectric, BaTiO3, sol-gel, low temperature, UV-ozone |
| 相關次數: | 點閱:114 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來光電產業蓬勃發展,而在主動式陣列有機發光二極體(AMOLED)面板的發展過程中,薄膜電晶體(TFT)技術顯得額外重要。非晶氧化物半導體(AOSs)像是氧化銦鎵鋅,對於作為TFT通道層是極具潛力的材料。除了改善TFT通道層的半導體材料之外,另一個可供選擇的方式在於採用高介電常數(high-k)材料作為閘極介電層,藉此獲得高電容以及低漏電流。在現有被廣泛應用的介電材料之外,尋找更適用於TFT上的材料也是值得探討的議題。鈦酸鋇(BTO)為鈣鈦礦結構之氧化物,可作為鐵電材料,亦曾在非高溫製程下應用於有機薄膜電晶體(OTFT)的介電層,然而BTO薄膜應用在非晶氧化物半導體TFT的探討卻十分罕見。
本論文採用溶膠凝膠法(sol-gel)以不同的UV-ozone照射時間以低溫製備BTO薄膜。在本論文的第一部分,詳細探討BTO薄膜的材料及電特性;在本論文的第二部分,則將以UV-ozone處理後的BTO薄膜作為IGZO-TFT的介電層,並檢視元件的電性以及在偏壓或照光情形下的穩定度。以UV-ozone處理後的BTO/IGZO-TFT呈現開關電流比為1.66 × 107、飽和載子遷移率為0.29 cm2/Vs,以及接近理論最小值的次臨界擺幅0.069 V/dec.
In recent years, the optoelectronics industry has been well developed. Thin film transistors (TFTs) are particularly important in the development of active-matrix organic light-emitting diode (AM-OLED) displays. Amorphous oxide semiconductors (AOSs), such as indium gallium zinc oxide (IGZO), have emerged as potential materials as channel of TFTs. Instead of improving the electrical characteristics of the channel layer of TFTs, an alternative way is to use high dielectric-constant (high-k) materials as the gate dielectrics for high capacitance and low leakage current. Besides the conventional dielectrics, finding a more suitable material for TFTs is also a critical issue to be investigated. BaTiO3 (BTO), an oxide with a perovskite structure that could be used as ferroelectric materials, has ever applied for dielectric layer of organic thin film transistors (OTFTs) and exhibits good insulator property without high process temperature. Nevertheless, BTO films applied for AOS-TFTs have rarely been investigated.
In this study, sol-gel method is used to fabricate BTO thin films with different UV-ozone illumination time at low-temperature process. In the first part of this thesis, the detailed investigation of BTO thin films, including material and electrical characteristics is presented. In the second part of this thesis, the proposed BTO thin films after suitable UV-ozone treatment are applied for the dielectric layers of IGZO-TFTs. The electrical characteristic and stability test of the devices via bias or illumination are also examined. With UV-ozone treatment, BTO/IGZO-TFTs show an on/off current ratio of 1.66 × 107, a saturation mobility of 0.29 cm2/Vs, and an subthreshold swing of 0.069 V/dec closed to the theoretical minimum value.
[1] Shaojuan Li, Yong Cai, Dedong Han, Yi Wang, Lei Sun, Mansun Chan, et al., "Low-temperature ZnO TFTs fabricated by reactive sputtering of metallic zinc target," IEEE Transactions on Electron Devices, vol. 59, pp. 2555-2558, 2012.
[2] M. Fujii, Y. Ishikawa, R. Ishihara, J. Van Der Cingel, M. R. T. Mofrad, M. Horita, et al., "Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing," Applied Physics Letters, vol. 102, p. 122107, 2013.
[3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[4] B. N. Pal, B. M. Dhar, K. C. See, and H. E. Katz, "Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors," Nature Materials, vol. 8, pp. 898-903, 2009.
[5] P. Barquinha, L. Pereira, G. a. Gonçalves, D. Kuscer, M. Kosec, A. Vilà, et al., "Low-temperature sputtered mixtures of high-κ and high bandgap dielectrics for GIZO TFTs," Journal of the Society for Information Display, vol. 18, pp. 762-772, 2010.
[6] C. J. Chiu, S. P. Chang, and S. J. Chang, "High-performance a-igzo thin-film transistor using Ta2O5 gate dielectric," IEEE Electron Device Letters, vol. 31, pp. 1245-1247, 2010.
[7] W. Yang, K. Song, Y. Jung, S. Jeong, and J. Moon, "Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors," Journal of Materials Chemistry C, vol. 1, pp. 4275-4282, 2013.
[8] H. Pu, H. Li, Z. Yang, Q. Zhou, C. Dong, and Q. Zhang, "Effect of Content Ratio on Solution-Processed High-k Titanium-Aluminum Oxide Dielectric Films," ECS Solid State Letters, vol. 2, pp. N35-N38, 2013.
[9] K. Fröhlich, M. Ťapajna, A. Rosová, E. Dobročka, K. Hušeková, J. Aarik, et al., "Growth of High-Dielectric-Constant TiO2 Films in Capacitors with RuO2 Electrodes," Electrochemical and Solid-State Letters, vol. 11, pp. G19-G21, 2008.
[10] J. Liu, D. B. Buchholz, J. W. Hennek, R. P. H. Chang, A. Facchetti, and T. J. Marks, "All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics," Journal of the American Chemical Society, vol. 132, pp. 11934-11942, 2010.
[11] C.-H. C. Tung-Ming Pan, Fa-Hsyang Chen, Yu-Shu Huang, and Jim-Long Her, "Structural and Electrical Characteristics of Yb2O3 and YbTixOy Gate Dielectrics for a-InGaZnO Thin-Film Transistors," IEEE Journal of Display Technology, vol. 11, pp. 248-254, 2015.
[12] T.-J. Ha and A. Dodabalapur, "Photo stability of solution-processed low-voltage high mobility zinc-tin-oxide/ZrO2 thin-film transistors for transparent display applications," Applied Physics Letters, vol. 102, p. 123506, 2013.
[13] M. Houssa, "High-k Gate Dielectrics," London, U.K., Inst. of Physics, 2004.
[14] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-k gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, pp. 5243-5243, 2001.
[15] S. Roberts, "Dielectric and Piezoelectric Properties of Barium Titanate," Physical Review, vol. 71, pp. 890-895, 1947.
[16] G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, "Structures of the ferroelectric phases of barium titanate," Journal of Physical Chemistry, vol. 97, pp. 2368-2377, 1993.
[17] J. Robertson, "High dielectric constant oxides," The European Physical Journal Applied Physics, vol. 28, pp. 265-291, 2004.
[18] Chia-Yu Wei, Shu-Hao Kuo, Yu-Ming Hung, Wen-Chieh Huang, Feri Adriyanto, and Y.-H. Wang, "High-Mobility Pentacene-Based Thin-Film Transistors With Solution-Processed Barium Titanate Insulator," IEEE Electron Device Letters, vol. 32, pp. 90-92, 2011.
[19] H.-H. Y. Chen-Hao Ku , Guan-Ren Chen and Jih-Jen Wu, "Wet-chemical route to ZnO nanowire-layered basic zinc acetate ZnO nanoparticle composite film," Cryst. Growth Des., vol. 8, pp. 283–290, 2008.
[20] H. S. Shin, G. H. Kim, W. H. Jeong, B. D. Ahn, and H. J. Kim, "Electrical Properties of Yttrium–Indium–Zinc-Oxide Thin Film Transistors Fabricated Using the Sol–Gel Process and Various Yttrium Compositions," Japanese Journal of Applied Physics, vol. 49, p. 03CB01, 2010.
[21] D.-H. Lee, Y.-J. Chang, G. S. Herman, and C.-H. Chang, "A general route to printable high-mobility transparent amorphous oxide semiconductors," Advanced Materials, vol. 19, pp. 843-847, 2007.
[22] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, "Role of Gallium Doping in Dramatically Lowering Amorphous-Oxide Processing Temperatures for Solution-Derived Indium Zinc Oxide Thin-Film Transistors," Advanced Materials, vol. 22, pp. 1346-1350, 2010.
[23] H.-C. Cheng and C.-Y. Tsay, "Flexible a-IZO thin film transistors fabricated by solution processes," Journal of Alloys and Compounds, vol. 507, pp. L1-L3, 2010.
[24] K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, et al., "Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process," Nat Mater, vol. 10, pp. 45-50, 2011.
[25] Y. H. Kim, J. S. Heo, T. H. Kim, S. Park, M. H. Yoon, J. Kim, et al., "Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films," Nature, vol. 489, pp. 128-132, 2012.
[26] Y. H. Hwang, S.-J. Seo, J.-H. Jeon, and B.-S. Bae, "Ultraviolet photo-annealing process for low temperature processed sol-gel zinc tin oxide thin film transistors," Electrochemical and Solid-State Letters, vol. 15, pp. H91-H93, 2012.
[27] L. J. Edgar, "Method and apparatus for controlling electric currents," ed: Google Patents, 1930.
[28] P. Weimer, "An evaporated thin-film triode," Electron Devices, IRE Transactions on, vol. 8, pp. 421-421, 1961.
[29] M. Shur and M. Hack, "Physics of amorphous silicon based alloy field‐effect transistors," Journal of Applied Physics, vol. 55, pp. 3831-3842, 1984.
[30] T. P. Brody, J. A. Asars, and G. D. Dixon, "A 6 x 6 Inch 20 Lines-per-Inch Liquid Crystal. Display Panel," IEEE Transactions on Electron Devices, vol. ED-20, pp. 995-1001, 1973.
[31] S. W. Depp, A. Juliana, and B. G. Huth, "Polysilicon FET devices for large area input/output applications," Technical Digest - International Electron Devices Meeting, pp. 703-706, 1980.
[32] A. Juliana, S. W. Depp, B. Huth, and T. Sedgwick, "Thin-Film Polysilicon Devices For Flat-Panel Display Circuitry," in Digest of Technical Papers - 1982 SID International Symposium., San Diego, CA, USA, 1982, pp. 38-39.
[33] T. Nishimura, Y. Akasaka, H. Nakata, A. Ishizu, and T. Matsumoto, "Characteristics of TFT Fabricated in Laser-Recrystallized Polysilicon For Active LC Display," Proceedings of the SID, vol. 23, pp. 209-213, 1982.
[34] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin-film transistors," Science and Technology of Advanced Materials, vol. 11, 2010.
[35] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," Japanese Journal of Applied Physics, vol. 45, pp. 4303-4308, 2006.
[36] C.-F. C. Hua-Chi Cheng, JihPerng Leu, "The Fabrication and Characteristics of ZnO Semiconducting Thin Film and Thin Film Transistors by Solution Method," Unpublished master's thesis, National Chiao Tung University, Hsinchu, Taiwan, Republic of China., 2008.
[37] H.-P. S. Po-Kai Hsu, Yi-Pai Huang, "Transparent Amorphous Zn-Sn-O Thin Film Transistors with Indium Free Electrodes," Unpublished master's thesis, National Chiao Tung University, Hsinchu, Taiwan, Republic of China., 2012.
[38] D. A. K. John F. Wager, Rick E. Presley, "Transparent Electronics," Springer US, pp. 10-11, 2008.
[39] W. J. Park, H. S. Shin, B. D. Ahn, G. H. Kim, S. M. Lee, K. H. Kim, et al., "Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor," Applied Physics Letters, vol. 93, p. 083508, 2008.
[40] E. S. Yang, "Microelectronic Devices," Mcgraw Hill, Singapore, 1988.
[41] D. K. Schroder, "Semiconductor Material and Device Characterization," A JOHN WILEY & SONS, INC., PUBLICATION, 2006.
[42] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances," Adv Mater, vol. 24, pp. 2945-2986, 2012.
[43] C. Hagendorf, K. M. Schindler, T. Doege, and H. Neddermeyer, "A scanning tunneling microscopy, X-ray photoelectron spectroscopy and low-energy electron diffraction investigation of the BaTiO3(111) surface," Surface Science, vol. 436, pp. 121-130, 1999.
[44] M. M. Vijatovic, J. D. Bobic, and B. D. Stojanovic, "History and challenges of barium titanate: Part I," Science of Sintering, vol. 40, pp. 155-165, 2008.
[45] C. Feldman, "Formation of Thin Films of BaTiO3 by Evaporation," Review of Scientific Instruments, vol. 26, pp. 463-466, 1955.
[46] M. Vehkamäki, T. Hatanpää, T. Hänninen, M. Ritala, and M. Leskelä, "Growth of SrTiO3 and BaTiO3 thin films by atomic layer deposition," Electrochemical and Solid-state letters, vol. 2, pp. 504-506, 1999.
[47] K. Sreenivas, A. Mansingh, and M. Sayer, "Structural and electrical properties of rf‐sputtered amorphous barium titanate thin films," Journal of applied physics, vol. 62, pp. 4475-4481, 1987.
[48] A. R. Teren, J. A. Belot, N. L. Edleman, T. J. Marks, and B. W. Wessels, "MOCVD of Epitaxial BaTiO3 Films Using a Liquid Barium Precursor," Chemical Vapor Deposition, vol. 6, pp. 175-177, 2000.
[49] R. Thomas, D. C. Dube, M. N. Kamalasanan, and N. D. Kumar, "Electrical Properties of Sol-Gel Processed Amorphous BaTiO3 Thin Films," Journal of Sol-Gel Science and Technology, vol. 16, pp. 101-107, 1999.
[50] R. Ashiri, A. Nemati, M. Sasani Ghamsari, and H. Aadelkhani, "Characterization of optical properties of amorphous BaTiO3 nanothin films," Journal of Non-Crystalline Solids, vol. 355, pp. 2480-2484, 2009.
[51] B. K. Roy and J. Cho, "Dielectric Properties of Solution-Deposited Crystalline Barium Titanate Thin Films," Journal of the American Ceramic Society, vol. 95, pp. 1189-1192, 2012.
[52] O. Trithaveesak, J. Schubert, and C. Buchal, "Ferroelectric properties of epitaxial BaTiO3 thin films and heterostructures on different substrates," Journal of Applied Physics, vol. 98, p. 114101, 2005.
[53] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, et al., "Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films," Science, vol. 306, pp. 1005-1009, 2004.
[54] P. Li, T. M. Lu, and H. Bakhru, "High charge storage in amorphous BaTiO3 thin films," Applied Physics Letters, vol. 58, pp. 2639-2641, 1991.
[55] G. W. S. C. Jeffery. Brinker, "Sol-Gel Science," Academic Press, INC., 1990.
[56] A. J. H. C. J. Brinker, P. R. Schunk, C. S. Ashely, R.A. Cairncross, J. Samuel, K. S. Chen, C. Scotto and R. A. Schwartz, "Metallurgical and Ceramic Protective Coatings," Springer Netherlands, pp. 112-151, 1996.
[57] T. Troczynski and Q. Yang, "Process for making chemically bonded sol-gel ceramics," ed: Google Patents, 2001.
[58] T. Olding, M. Sayer, and D. Barrow, "Ceramic sol–gel composite coatings for electrical insulation," Thin Solid Films, vol. 398–399, pp. 581-586, 2001.
[59] S. Bandyopadhyay, G. K. Paul, R. Roy, S. K. Sen, and S. Sen, "Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique," Materials Chemistry and Physics, vol. 74, pp. 83-91, 2002.
[60] D. E. Bornside, C. W. Macosko, and L. E. Scriven, "Spin coating: One‐dimensional model," Journal of Applied Physics, vol. 66, pp. 5185-5193, 1989.
[61] "http://www.centexbel.be/solgel-treatment."
[62] F. M. Pontes, C. D. Pinheiro, E. Longo, E. R. Leite, S. R. de Lazaro, R. Magnani, et al., "Theoretical and experimental study on the photoluminescence in BaTiO3 amorphous thin films prepared by the chemical route," Journal of Luminescence, vol. 104, pp. 175-185, 2003.
[63] B.-G. Kim, J.-Y. Kim, S.-J. Lee, J.-H. Park, D.-G. Lim, and M.-G. Park, "Structural, electrical and optical properties of Ga-doped ZnO films on PET substrate," Applied Surface Science, vol. 257, pp. 1063-1067, 2010.
[64] J. Davenas, S. Besbes, A. Abderrahmen, N. Jaffrezic, and H. Ben Ouada, "Surface characterisation and functionalisation of indium tin oxide anodes for improvement of charge injection in organic light emitting diodes," Thin Solid Films, vol. 516, pp. 1341-1344, 2008.
[65] A. Rudawska and E. Jacniacka, "Analysis for determining surface free energy uncertainty by the Owen–Wendt method," International Journal of Adhesion and Adhesives, vol. 29, pp. 451-457, 2009.
[66] H. J. Kim, J. W. Kim, H. H. Lee, T.-M. Kim, J. Jang, and J.-J. Kim, "Grazing Incidence Small-Angle X-ray Scattering Analysis of Initial Growth of Planar Organic Molecules Affected by Substrate Surface Energy," The Journal of Physical Chemistry Letters, vol. 2, pp. 1710-1714, 2011.
[67] J. L. Wu, H. Y. Lin, Y. C. Chen, S. Y. Chu, C. C. Chang, C. J. Wu, et al., "Effects of ZnO Buffer Layer on Characteristics of ZnO:Ga Films Grown on Flexible Substrates: Investigation of Surface Energy, Electrical, Optical, and Structural Properties," ECS Journal of Solid State Science and Technology, vol. 2, pp. P115-P119, 2013.
[68] M. Wu, Z. Wang, T. Zhang, and W. F. Zhang, "Composition dependence of optical constants in ferroelectric Ba(Ti1-x,Nix)O3 thin films by optical transmittance technique," Thin Solid Films, vol. 518, pp. 7007-7011, 2010.
[69] A. Mansingh and C. V. R. Vasanta Kumar, "Effect of the target on the structure and optical properties of radio-frequency sputtered barium titanate films," Journal of Materials Science Letters, vol. 7, pp. 1104-1106, 1988.
[70] H. Fujiwara, M. Kondo, and A. Matsuda, "Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy," Journal of Applied Physics, vol. 93, pp. 2400-2409, 2003.
[71] W. M. Tang, M. T. Greiner, Z. H. Lu, W. T. Ng, and H. G. Nam, "Effects of UV-ozone treatment on radio-frequency magnetron sputtered ZnO thin films," Thin Solid Films, vol. 520, pp. 569-573, 2011.
[72] C.-C. Lin, C.-C. Chen, C.-M. Weng, S.-Y. Chu, C.-S. Hong, and C.-C. Tsai, "Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films," Journal of Applied Physics, vol. 117, p. 085307, 2015.
[73] T. S. Moss, "The Interpretation of the Properties of Indium Antimonide," Proceedings of the Physical Society. Section B, vol. 67, p. 775, 1954.
[74] E. Fortunato, P. Barquinha, and R. Martins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances," Advanced Materials, vol. 24, pp. 2945-2986, 2012.
[75] R. B. M. Cross and M. M. De Souza, "Investigating the stability of zinc oxide thin film transistors," Applied Physics Letters, vol. 89, p. 263513, 2006.
[76] J. Kwang Hwan, K. Ji-In, M. Yeon-Gon, J. Jong Han, Y. Shinhyuk, H. Chi-Sun, et al., "Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics," IEEE Electron Device Letters, vol. 31, pp. 1404-1406, 2010.
[77] K.-H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, et al., "The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors," Applied Physics Letters, vol. 95, p. 232106, 2009.
[78] J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. Park, W.-S. Cheong, M. Ryu, et al., "Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors," ETRI Journal, vol. 31, pp. 62-64, 2009.
[79] T. C. Fung, C. S. Chuang, K. Nomura, H. P. D. Shieh, H. Hosono, and J. Kanicki, "Photofield‐effect in amorphous In‐Ga‐Zn‐O (a‐IGZO) thin‐film transistors," Journal of Information Display, vol. 9, pp. 21-29, 2008.