| 研究生: |
翁睿佟 Weng, Rui-Tong |
|---|---|
| 論文名稱: |
一個應用於無鉛壓電MEMS加速規之讀取電路及晶片設計 Readout Circuit and Chip Design for a Piezoelectric MEMS Accelerometer |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 轉阻放大器 、基於電流鏡讀取電路 、無鉛壓電式加速規 、類比數位轉換器 、逐漸趨近式 |
| 外文關鍵詞: | Transimpedance amplifier, Current mirror-based readout circuit, Piezoelectric accelerometer, Analog-to-digital converter, Successive approximation register(SAR) |
| 相關次數: | 點閱:135 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個可以應用於壓電加速規的讀取電路。此讀取電路包含電流轉電壓轉換器以及類比至數位轉換器。在電流轉電壓轉換器部分,本論文基於兩種架構研製了兩個版本:傳統轉阻放大器(版本一)與基於電流鏡之電流轉電壓的轉換器(版本二)。與傳統轉阻放大器相比,本論文所提出之基於電流鏡之電流轉電壓的轉換器在不損失靈敏度以及線性度的條件之下,功耗下降約10倍左右。另外,本論文所研製之讀取電路涵蓋了類比至數位轉換器,因此可以直接將數位碼傳送到數位端做進一步的訊號處理。
在本論文中,以台積電180奈米製程完成晶片實作。第一顆晶片(版本一)量測效能顯示,在1.8伏特電源供電的條件下,加速規系統的線性度為0.9956,靈敏度為154 mV/g,消耗功率為0.435 mW。第二顆晶片(版本二)量測效能顯示,在1.8伏特電源供電的條件下,加速規系統的線性度為0.9998,靈敏度為142 mV/g,消耗功率為0.0489 mW。
This thesis presents a readout circuit for a piezoelectric accelerometer. The readout circuit includes a current-to-voltage converter and an analog-to-digital converter (ADC). On the design of current-to-voltage converter, this work realizes two versions with different structures: conventional transimpedance amplifier (Version Ⅰ) and current mirror-based current-to-voltage converter (Version Ⅱ). Compared with the conventional transimpedance amplifier, the power consumption of the proposed current mirror-based current-to-voltage converter is reduced by approximately 10 times without losing sensitivity and linearity. In addition, compared with other readout circuits, this design also adds an analog-to-digital converter, so the digital code can be directly transmitted to the succeeding digital processor for further processing.
The proof-of-concept prototype is fabricated in the 180-nm CMOS process. The measurement results of the first chip (Version Ⅰ) show that the linearity of the accelerometer system is 0.9956, the sensitivity is 154 mV/g, and the power consumption is 0.435 mW under a 1.8 V supply voltage. The measurement results for the second chip (Version Ⅱ) show that the linearity of the accelerometer system is 0.9998, the sensitivity is 142 mV/g, and the power consumption is 0.0489 mW under a 1.8 V supply voltage.
[1] B. Murmann, “ADC Performance Survey 1997−2020,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] M. Haris and H. Qu, “A CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass,” in Proc. 5th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen-China, Jan. 2010, pp. 309–312.
[3] C. Saayujya, J. S.-Q. Tan, Y. Yuan, Y.-R. Wong, and H. Du, “Design, fabrication and characterization of a zinc oxide thin-film piezoelectric accelerometer,” in Proc. IEEE 9th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, Apr. 2014, pp.1–6.
[4] D. Goustouridias, G. Kaltsas, and A. G. Nassiopoulou, “A silicon thermal accelerometer without solid proof mass using porous silicon thermal isolation,” IEEE Sensors J., vol. 7, no. 7, pp. 983–989, Jul. 2007.
[5] P.-C. Wu, B.-D. Liu, S.-H. Tseng, H.-H. Tsai, and Y.-Z. Juang, “Digital Offset Trimming Techniques for CMOS MEMS Accelerometers,” IEEE Sensors Journal, vol. 14, no. 2, pp. 570–577, Feb. 2014.
[6] S.-M. Tseng, “Single-Axis CMOS-MEMS Capacitive Accelerometer with Post-Processing Circuits,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jan. 2017.
[7] Y.-K. Lee, “Development of CMOS-MEMS Capacitive Accelerometers,” M.S. thesis, Inst. of Mech. Eng., National Chiao Tung Univ., Hsinchu, Taiwan, R.O.C., Jun. 2008.
[8] C.-M. Sun, “Implementation and Development Double-side CMOS-MEMS Platform for Sensors Integration,” Ph.D. dissertation, Inst. of NanoEngineering and MicroSyst., National Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., May 2010.
[9] P.-C. Wu, B.-D. Liu, S.-H. Tseng, H.-H. Tsai, and Y.-Z. Juang, “Digital Offset Trimming Techniques for CMOS MEMS Accelerometers,” IEEE Sensors J., vol. 14, no. 2, pp. 570–577, Feb. 2014.
[10] M.-H. Tsai, Y.-C. Liu, K.-C. Liang, and W. Fang, “Monolithic CMOS-MEMS Pure Oxide Tri-Axis Accelerometers for Temperature Stabilization and Performance Enhancement,” J. of Microelectromech. Syst., vol. 24, Issue. 6, pp. 1916–1927, Jul. 2015.
[11] Z.-H. C, “A Study of C-axis Aluminum Nitride Piezoelectric Films via Low- temperature Sputtering method for Lead-free Piezoelectric MEMS Accelerometer Applications” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2019.
[12] A. Walid and A. H. Ismail, "A 14-bit low-power interface circuit for piezo-resistive pressure sensors," 2015 27th International Conference on Microelectronics (ICM), Casablanca, 2015, pp. 166-169, doi: 10.1109/ICM.2015.7438014.
[13] N. Yazdi, H. Kulah and K. Najafi, "Precision readout circuits for capacitive microaccelerometers," SENSORS, 2004 IEEE, Vienna, 2004, pp. 28-31 vol.1, doi: 10.1109/ICSENS.2004.1426091.
[14] M. Brandl and V. Kempe, "High performance accelerometer based on CMOS technologies with low cost add-ons," Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090), Interlaken, Switzerland, 2001, pp. 6-9, doi: 10.1109/MEMSYS.2001.906465.
[15] H. Jingqing et al., "Programmable readout circuit for capacitive accelerometer," 2011 IEEE International Conference of Electron Devices and Solid-State Circuits, Tianjin, 2011, pp. 1-2, doi: 10.1109/EDSSC.2011.6117621.
[16] A. Utz, C. Walk, A. Stanitzki, M. Mokhtari, M. Kraft and R. Kokozinski, "A high precision MEMS based capacitive accelerometer for seismic measurements," 2017 IEEE SENSORS, Glasgow, 2017, pp. 1-3, doi: 10.1109/ICSENS.2017.8233981.
[17] H. Zhou, M. Xu, H. Peng, L. Zhu, Y. Zeng and H. Guo, "On the measuring circuit of piezoelectric accelerometers," 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Chengdu, 2017, pp. 524-527.
[18] M. Massarotto, A. Carlosena and A. J. Lopez-Martin, "Two-Stage Differential Charge and Transresistance Amplifiers," in IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 2, pp. 309-320, Feb. 2008.
[19] B. Zand, K. Phang and D. A. Johns, "A transimpedance amplifier with DC-coupled differential photodiode current sensing for wireless optical communications," Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169), San Diego, CA, 2001, pp. 455-458.
[20] Analog Devices Inc., The Data Conversion Handbook. W. Keater, ed. Burlington, MA: Newnes, 2005.
[21] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd Ed. Boston, USA: Kluwer Academic Publishers, 2003.
[22] M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS Data Converters for Communications, New York, USA: Kluwer Academic Publishers, 2002.
[23] J. K. Fiorenza, T. Sepke, P. Holloway, C.G. Sodini, and H.-S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006.
[24] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U.-K. Moon, “Ring amplifiers for switched capacitor circuits,” in IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012.
[25] Y. Lim, and M. P. Flynn, “A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 202–203.
[26] Bahram Zand , Khoman Phang , “Transimpedance Amplifier With Differential Photodiode Current Sensing,’’1999 IEEE International Symposium on Circuit and System VLSI.
[27] G. Huang, S. Chang, C. Liu and Y. Lin, "10-bit 30-MS/s SAR ADC Using a Switchback Switching Method," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013.
[28] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731−740, Apr. 2010.
[29] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268–271.
[30] J.-H. Tsai et al., ‘‘A 1-V, 8b, 40MS/s, 113μW Charge-Recycling SAR ADC with a 14μW Asynchronous Controller,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2011, pp. 264–265.
[31] C.-H. Kuo, “A 10-bit 120-MS/s SAR ADC with compact architecture and noise suppression technique,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2014.
[32] Weixun Yan , Horst Zimmermann, “ Continuous-Time Common-Mode Feedback Circuit for Application with Large Output Swing and High Output Impedance, ’’2008 IEEE Workshop on Design and Diagnostics of Electronic Circuit and System.
[33] M. Dessouky, and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electron. Lett., vol. 35, pp. 8–10, Jan. 1999.
[34] G. Huang, and P. Lin, “A fast bootstrapped switch for high-speed high-resolution A/D converter,” in IEEE APCCAS, 2010, pp. 382–385.
[35] J.-H. Tsai et al., ‘‘A 1-V, 8b, 40MS/s, 113μW Charge-Recycling SAR ADC with a 14μW Asynchronous Controller,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2011, pp. 264–265.
[36] T. Ogawa et al., "Non-binary SAR ADC with digital error correction for low power applications," 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, 2010, pp. 196-199.
[37] F. M. Yaul and A. P. Chandrakasan, "11.3 A 10b 0.6nW SAR ADC with data-dependent energy savings using LSB-first successive approximation," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 198-199.
[38] C. Liu, S. Chang, G. Huang, Y. Lin and C. Huang, "A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS," 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 241-242.
[39] A. Walid and A. H. Ismail, "A 14-bit low-power interface circuit for piezo-resistive pressure sensors," 2015 27th International Conference on Microelectronics (ICM), Casablanca, 2015, pp. 166-169
[40] Y. Liu, C. Huang, F. Kuo, K. Wen and L. Fan, "A monolithic CMOS/MEMS accelerometer with zero-g calibration readout circuit," Eurocon 2013, Zagreb, 2013, pp. 2106-2110.
[41] S. Tan, C. Liu, L. Yeh, Y. Chiu, M. S. -. Lu and K. Y. J. Hsu, "An Integrated Low-Noise Sensing Circuit With Efficient Bias Stabilization for CMOS MEMS Capacitive Accelerometers," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 11, pp. 2661-2672, Nov. 2011.