簡易檢索 / 詳目顯示

研究生: 陳韋佑
Chen, Wei-You
論文名稱: 適用於12GHz羰基鐵/鎳鋅鈷鐵氧體雙層吸波材料之開發
Development of Double-layer Absorbing Materials of Carbonyl Iron and Nickel Zinc Cobalt Ferrite for 12GHz Applications
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 102
中文關鍵詞: 鎳鋅鈷鐵氧體羰基鐵雙層吸波材料
外文關鍵詞: Ni-Zn-Co ferrite, Carbonyl Iron, Double-layer absorbing materials
相關次數: 點閱:79下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以鎳鋅鈷鐵氧體(Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy與羰基鐵/Epoxy製作雙層吸波材料,在背置金屬板的條件下,改善在目標頻率12GHz單層吸波材料吸收頻寬不足的問題。過往本實驗室已探討過不同元素與煆燒溫度之(Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy之吸收效果,但該研究未說明其電磁損耗特性,如attenuation coefficient(α)與Impedance matching ratio(z),因此在本研究當中,將利用過往量測的複導磁係數與複介電常數重新計算其電磁損耗特性。同時本研究中還將製備並量測2G~18GHz下羰基鐵在Epoxy中不同重量摻雜比之複導磁係數與複介電常數,以計算其電磁損耗特性。然後根據兩材料的電磁損耗特性搭配雙層配置原則,在不同厚度比與總厚度下,數值分析得具有最大吸收頻寬的雙層材料參數組合,最後以該參數組合製作雙層吸波材料並加以量測。
    計算結果顯示在(Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy具有較高的z值,且在目標頻率12GHz的條件下以x=0.2、煆燒溫度為1200℃ 具有最大的z值0.49;在α方面為羰基鐵/Epoxy較高,且在目標頻率12GHz下羰基鐵在Epoxy中60 wt%的重量摻雜比例具有最大的α為183.36 Np/m,因此將選用這兩種製程參數進行數值分析。數值分析結果顯示,在中心頻率12GHz下使用雙層配置原則配置方式,即吸收層為attenuation coefficient (α)較大的羰基鐵/Epoxy、匹配層為 Impedance matching ratio(z)較大的鎳鋅鈷鐵氧體/Epoxy在總厚度為7.4mm厚度比(d_1 /d_2)為1.4的條件下具有最大-10dB吸收頻寬5.12GHz。相較於單層羰基鐵/Epoxy在,厚度為2mm具有最大-10dB吸收頻寬4.62GHz,最大反射損耗為-25.1dB。單層在厚度方面明顯優於雙層,而-10dB吸收頻寬為雙層較大,但也僅提升約10%,因此認定此次改善效果不佳。製作與量測結果顯示,雙層羰基鐵/鎳鋅鈷鐵氧體/Epoxy方面,總厚度為7.4mm厚度比為1.4,達-10dB吸收頻寬為3.6GHz,最大吸收峰值為-21.7dB,中心頻率為10.84;單層羰基鐵/Epoxy方面,材料厚度為2mm,達-10dB吸收頻寬為0.72GHz,最大吸收峰值為-20.6dB,中心頻率為11.56,綜合數值分析結果與量測結果,皆顯示了此次改善效果不佳。比對文獻結果,推測原因為材料選擇不佳,所組合為雙層吸波材料的羰基鐵/Epoxy與鎳鋅鈷鐵氧體/Epoxy之α、z差距不夠大。總結以上可得知雙層吸波材料,在材料配置上不僅要符合雙層配置原則,且材料選擇也極為重要,需選用α差距與z差距均較大的兩材料,才具有大的吸收頻寬。

    This study is based on the design principles proposed in previous literature. Utilizing a material with a higher Impedance matching ratio (z), specifically (Ni0.4Zn0.4Co0.2)Fe2O4/Epoxy, as the matching layer, and a material characterized by a more significant attenuation coefficient(α), namely carbonyl iron/Epoxy, as the absorption layer, a double-layer absorber material is constructed. Computational analysis indicates that at a central frequency of 12 GHz, a total thickness of 7.4 mm and a thickness ratio of 1.4 yyieldsthe maximum absorption bandwidth. Experimental results under identical conditions reveal a shift in the central frequency to 10.84 GHz, resulting in a reduction of the absorption bandwidth. Both calculations and measurements concur in demonstrating that the double-layer absorber material experiences a slight increase in absorption bandwidth compared to a single-layer counterpart. However, this enhancement comes at the expense of a considerable increase in material thickness. It is deduced that the discourse surrounding the design principles still needs to be completed necessitating the inclusion of materials with a gmoresignificantdisparit in α and z in order to produce absorber materials with an optimally improved bandwidth for absorption.

    摘要 I 致謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法與目標 4 第二章 電磁波吸收理論 6 2-1 電磁干擾 6 2-2 電磁吸波原理 8 2-2-1 介質中的電磁波 8 2-2-2 電磁波吸收材料工作原理與電磁損耗特性參數 11 2-2-3 吸波材料之反射損耗推算 13 2-2-4 雙層配置原則 16 第三章 電磁波吸收材料 24 3-1 磁性材料 24 3-1-1 羰基鐵 24 3-1-2 鎳鋅鈷鐵氧體 27 3-2 高分子聚合物與複合吸波材料 33 第四章 實驗方法與規劃 34 4-1 粉體原料 34 4-2 粉體製作 36 4-3 複合試片製作與量測 38 4-3-1 單層複合試片製作 38 4-3-2 雙層複合試片製作 40 4-3-3 波導管量測法 40 4-3-4 網路分析儀量測理論 41 4-4 HFSS模擬吸波材料 48 4-5 實驗規劃 50 4-5-1 反射損耗與電磁損耗特性計算公式之驗證與12GHz特性 50 4-5-2 計算鎳鋅鈷鐵氧體/Epoxy試片電磁損耗特性 50 4-5-3 不同摻雜比例下羰基鐵/Epoxy試片電磁損耗特性分析 50 4-5-4 羰基鐵/鎳鋅鈷鐵氧體/Epoxy雙層吸波材料設計與計算 51 4-5-5 羰基鐵/鎳鋅鈷鐵氧體吸波/Epoxy雙層吸波材料製作與反射損耗量測 51 第五章 實驗結果與討論 53 5-1 反射損耗與電磁損耗特性計算公式之驗證與12GHz特性結果 53 5-2 鎳鋅鈷鐵氧體/Epoxy電磁損耗特性之計算結果 66 5-3 羰基鐵/Epoxy 74 5-3-1 羰基鐵/Epoxy試片之複介電常數與複導磁係數量測 74 5-3-2 羰基鐵/Epoxy試片之電磁損耗特性推算結果 76 5-4 羰基鐵/鎳鋅鈷鐵氧體/Epoxy雙層吸波材料設計 79 5-4-1 羰基鐵/Epoxy與鎳鋅鈷鐵氧體/Epoxy單層試片之反射損耗公式推算 79 5-4-2 羰基鐵/Epoxy與鎳鋅鈷鐵氧體/Epoxy雙層試片之反射損耗公式推算 80 5-4-3 HFSS模擬羰基鐵/Epoxy與鎳鋅鈷鐵氧體/Epoxy雙層試片之反射損耗 86 5-5 羰基鐵/鎳鋅鈷鐵氧體/Epoxy雙層吸波材料之反射損耗量測結果與檢討 90 5-5-1 羰基鐵/Epoxy與鎳鋅鈷鐵氧體/Epoxy雙層吸波材料反射損耗量測 90 5-5-2 雙層吸波材料設計原則探討 93 第六章 結論 97 參考文獻 99

    [1] Z. Kassas, J. Morales, and J. Khalife, "New-age satellite-based navigation--STAN: simultaneous tracking and navigation with LEO satellite signals," Inside GNSS Magazine, vol. 14, no. 4, pp. 56-65, 2019.
    [2] M. Kaur, S. Kakar, and D. Mandal, "Electromagnetic interference," in 2011 3rd International Conference on Electronics Computer Technology, 2011, vol. 4: IEEE, pp. 1-5.
    [3] D. Chung, "Materials for electromagnetic interference shielding," Materials Chemistry and Physics, vol. 255, p. 123587, 2020.
    [4] M. M. Tirkey and N. Gupta, "Electromagnetic absorber design challenges," IEEE Electromagnetic Compatibility Magazine, vol. 8, no. 1, pp. 59-65, 2019.
    [5] X. Zeng, X. Cheng, R. Yu, and G. D. Stucky, "Electromagnetic microwave absorption theory and recent achievements in microwave absorbers," Carbon, vol. 168, pp. 606-623, 2020.
    [6] G. Fang et al., "Enhanced microwave absorption properties of Zr4+-doped Fe3O4 for coordinated impedance matching and attenuation performances," Journal of Alloys and Compounds, vol. 790, pp. 316-325, 2019.
    [7] A. Houbi, Z. A. Aldashevich, Y. Atassi, Z. B. Telmanovna, M. Saule, and K. Kubanych, "Microwave absorbing properties of ferrites and their composites: A review," Journal of Magnetism and Magnetic Materials, vol. 529, p. 167839, 2021.
    [8] K. S. Sista, S. Dwarapudi, D. Kumar, G. R. Sinha, and A. P. Moon, "Carbonyl iron powders as absorption material for microwave interference shielding: A review," Journal of Alloys and Compounds, vol. 853, p. 157251, 2021.
    [9] F. Meng et al., "Graphene-based microwave absorbing composites: A review and prospective," Composites Part B: Engineering, vol. 137, pp. 260-277, 2018.
    [10] 陳建安, "(Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy/CNF/CNT複合試片之製作與電磁微波吸收特性之研究," 成功大學, 2022.
    [11] P. Liu et al., "Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites," Journal of alloys and compounds, vol. 701, pp. 841-849, 2017.
    [12] R.-B. Yang and W.-F. Liang, "Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers," Journal of Applied Physics, vol. 109, no. 7, p. 07A311, 2011.
    [13] N. Joseph and M. T. Sebastian, "Electromagnetic interference shielding nature of PVDF-carbonyl iron composites," Materials Letters, vol. 90, pp. 64-67, 2013.
    [14] R. Dosoudil, M. Ušáková, J. Franek, J. Sláma, and V. Olah, "RF electromagnetic wave absorbing properties of ferrite polymer composite materials," Journal of Magnetism and Magnetic Materials, vol. 304, no. 2, pp. e755-e757, 2006.
    [15] Z. Fan, G. Luo, Z. Zhang, L. Zhou, and F. Wei, "Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites," Materials Science and Engineering: B, vol. 132, no. 1-2, pp. 85-89, 2006.
    [16] B. Wang, J. Wei, Y. Yang, T. Wang, and F. Li, "Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite," Journal of Magnetism and Magnetic Materials, vol. 323, no. 8, pp. 1101-1103, 2011.
    [17] Y. Qing, W. Zhou, F. Luo, and D. Zhu, "Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings," Journal of Magnetism and Magnetic Materials, vol. 321, no. 1, pp. 25-28, 2009.
    [18] H. Sun et al., "Broadband and High-Efficiency Microwave Absorbers Based on Pyramid Structure," ACS Applied Materials & Interfaces, vol. 14, no. 46, pp. 52182-52192, 2022.
    [19] D. Kundu, A. Mohan, and A. Chakrabarty, "Single-layer wideband microwave absorber using array of crossed dipoles," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1589-1592, 2016.
    [20] W. Meng, D. Yuping, L. Shunhua, L. Xiaogang, and J. Zhijiang, "Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers," Journal of Magnetism and Magnetic Materials, vol. 321, no. 20, pp. 3442-3446, 2009.
    [21] P. Liu et al., "Double-layer absorbers based on hierarchical MXene composites for microwave absorption through optimal combination," Journal of Materials Research, vol. 35, no. 11, pp. 1481-1491, 2020.
    [22] D. Jiang et al., "Electromagnetic interference shielding polymers and nanocomposites-a review," Polymer Reviews, vol. 59, no. 2, pp. 280-337, 2019.
    [23] "Dielectric loss - Wikipedia." https://en.wikipedia.org/wiki/Dielectric_loss (accessed June 30, 2023).
    [24] H. Wei, Z. Zhang, G. Hussain, L. Zhou, Q. Li, and K. K. Ostrikov, "Techniques to enhance magnetic permeability in microwave absorbing materials," Applied Materials Today, vol. 19, p. 100596, 2020.
    [25] Y. Zhang, F. Xu, G. Tan, J. Zhang, T. Wang, and F. Li, "Improvement of microwave-absorbing properties of Co2Z barium ferrite composite by coating Ag nanoparticles," Journal of alloys and compounds, vol. 615, pp. 749-753, 2014.
    [26] G. Shen, M. Xu, and Z. Xu, "Double-layer microwave absorber based on ferrite and short carbon fiber composites," Materials Chemistry and Physics, vol. 105, no. 2-3, pp. 268-272, 2007.
    [27] Y. Cheng, J. Z. Y. Seow, H. Zhao, Z. J. Xu, and G. Ji, "A flexible and lightweight biomass-reinforced microwave absorber," Nano-Micro Letters, vol. 12, pp. 1-15, 2020.
    [28] M. S. Pinho, M. L. Gregori, R. C. R. Nunes, and B. G. Soares, "Performance of radar absorbing materials by waveguide measurements for X-and Ku-band frequencies," European Polymer Journal, vol. 38, no. 11, pp. 2321-2327, 2002.
    [29] Y. Duan, G. Li, L. Liu, and S. Liu, "Electromagnetic properties of carbonyl iron and their microwave absorbing characterization as filler in silicone rubber," Bulletin of Materials Science, vol. 33, pp. 633-636, 2010.
    [30] Y. Feng, T. Qiu, and C. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," Journal of Magnetism and magnetic materials, vol. 318, no. 1-2, pp. 8-13, 2007.
    [31] P. Thakur, S. Taneja, D. Chahar, B. Ravelo, and A. Thakur, "Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 530, p. 167925, 2021.
    [32] D.-L. Zhao, Q. Lv, and Z.-M. Shen, "Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites," Journal of Alloys and Compounds, vol. 480, no. 2, pp. 634-638, 2009.
    [33] Z. Wang and G.-L. Zhao, "Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz," 2013.
    [34] X. Guo et al., "Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core-shell carbonyl iron@ epoxy composites," Journal of Magnetism and Magnetic Materials, vol. 485, pp. 244-250, 2019.
    [35] J.-E. Yoo and Y.-M. Kang, "Electromagnetic wave absorbing properties of Ni-Zn ferrite powder–epoxy composites in GHz range," Journal of Magnetism and Magnetic Materials, vol. 513, p. 167075, 2020.
    [36] L.-C. Tang et al., "The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites," Carbon, vol. 60, pp. 16-27, 2013.
    [37] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on microwave theory and techniques, vol. 38, no. 8, pp. 1096-1103, 1990.
    [38] A. Nicolson and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on instrumentation and measurement, vol. 19, no. 4, pp. 377-382, 1970.
    [39] Z. Zhang, X. Liu, X. Wang, Y. Wu, and R. Li, "Effect of Nd–Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites," Journal of Alloys and Compounds, vol. 525, pp. 114-119, 2012.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE