簡易檢索 / 詳目顯示

研究生: 黃繹任
Huang, Yi-Jen
論文名稱: 氧化鋅成長於矽基板薄膜品質及P型導電行為之探討
Investigation of the film quality of ZnO thin films grown on implanted silicon substrates and the p-type conduction behaviors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 88
中文關鍵詞: P型氧化鋅氧化鋅薄膜熱退火
外文關鍵詞: P-type ZnO, implanted silicon, thermal diffusion
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅具有寬能隙及較大的激子束缚能,所以具有成為深紫外發光二極體的潛力。同時由於它的半導體及壓電特性,也廣泛被用來形成透明導電膜及表面聲波元件的材料。所以研究氧化鋅薄膜品質,對於上述應用特性為一個重要的影響因素。另外,以氧化鋅為主的光電元件,獲得穩定P型氧化鋅半導體層,也是另一個重要的課題。
    本文利用巨觀反射式二次諧波來探討氧化鋅薄膜中,具有極性且鏡面對稱的微晶界(grain boundary)與薄膜品質的關係。在薄膜成長過程中,此晶界的有序性和氧化鋅成膜時具有的動能有關,且它會沿著氧化鋅[1 ̅10]最小晶界能量成長。
    P型氧化鋅半導體成長於具有高劑量、低能量離子佈植的矽基板,此時矽表面擁有大量未活化的雜質原子,利用成膜時適當的基板溫度及熱退火條件,來得到穩定性及再現性高的P型氧化鋅薄膜,其最大電洞濃度為6.7×1018 cm-3,最低電阻率為1.1×10-1 Ω-cm。我們也可以預先控制離子佈植入射原子的能量及劑量,來調整P型氧化鋅薄膜中電洞濃度及電阻率。其他量測方法如,X光繞射儀來探測其晶格特性,X光光譜儀和二次離子質譜儀來做成份分析,以及利用霍爾量測來驗證氧化鋅薄膜導電行為。此方法不受特定基板限制,也搭配目前成熟矽製程技術。

    ZnO is a candidate for applications in optoelectronic devices like ultraviolet region light-emitting diodes due to its wide direct band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. It has also been investigated extensively because of its electrical and piezoelectric characteristics, which are suitable for applications such as transparent conductive films and surface acoustic wave filters. The film quality of ZnO is a key factor for above-mentioned characteristics. In addition, obtaining a stable p-type ZnO layer is another important issue for realizing ZnO based optoelectronic devices.
    A polar mirror symmetrical contribution originated from the arrangement of grain boundaries existing in the ZnO film is detected by reflective second harmonic generation (RSHG) pattern. The ordering of ZnO grain boundary is dependent on the kinetic energy of deposited atoms and affects the quality of ZnO films. The net direction of the grain boundary in ZnO film trends toward the [1 ̅10] direction of Si(111) to reach the minimum grain energy for better quality ZnO film. The polar structure of the mirror-like boundaries under the optically macroscopic viewpoint presents a correlation with film quality.
    The p-type ZnO film is obtained out of thermal diffusion of Phosphorus (P)/ Arsenic (As) atoms from the low-energy high-dose implanted Si substrate through annealing process. A lot of non-activated dopants atoms exist on the surface of the shallow implanted Si substrate and easily out-diffuse into ZnO films at proper annealing conditions. In addition, we modulate the implanting conditions, such as implanting dose or energy so that more non-activated dopants reside in the surface region of the substrate and and out-diffuse into ZnO films efficiently by this diffusion method. Moderate implanting dose or energy could make the ZnO films exhibit p-type conducting; increase the hole concentrations and preservation time in the air ambient. We also demonstrate that stable p-type conduction appears at a proper substrate temperature (TS). The best crystallinity and electrical properties of the p-type ZnO films were obtained at TS=400 °C. The maximum carrier concentration of the As dopant was 6.7×1018 cm-3 and the resistivity reached 1.1×10-1 Ω-cm. The reproducible As-doped ZnO films can be obtained by this diffusion method. The crystalline microstructure of the ZnO films was studied by X-ray diffraction (XRD). The composition of these films was measured by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The conduction type of the ZnO films was detected using Hall effect measurements. This diffusion method was not restricted by particular substrate and combined with popular silicon-based manufacturing process.

    Table of contents Chapter 1 Introduction 1 Chapter 2 Theory and Literature Review 5 2.1 Optical reflective second harmonic generation (SHG) 5 2.1.1 Introduction to nonlinear optics 5 2.2 SHG from ZnO 8 2.2.1 Bulk ZnO 8 2.2.2 Single crystal ZnO films with smooth surface 9 2.2.3 Microstructure with mirror symmetry 11 2.3 Diffusion in silicon 12 2.4 P-type ZnO 14 2.4.1 P-type ZnO formation 14 2.4.2 P-type ZnO by diffusion method 16 Chapter 3 ZnO thin films fabrication and Experimental measurement 20 3.1 RF sputtering system 20 3.2 Deposition of undoped ZnO films 21 3.3 Fabrication of p-type ZnO 22 3.4 Optical Second Harmonic Generation system set up 22 Chapter 4 Characterizations of ZnO thin films grown on silicon substrate 26 4.1 Microstructure in ZnO thin films 26 4.2 Stress analysis by XRD 27 4.3 The Ordering of ZnO grain boundaries under different RF power deposition condition 28 4.4 Optical second harmonic generation from the twin boundary 29 4.4.1 The relation between stress and SHG signals 29 4.4.2 The relation between the ordering of ZnO grain boundaries and SHG signals 30 Chapter 5 Controlling surface shallow junction depth by a rapid thermal annealing process with low ambient pressure 40 5.1 Shallow junction in implanted silicon 40 5.2 Out-diffusion behavior during RTA process 41 5.3 The formation of shallow junction 42 5.4 The SIMS profiles 43 5.5 Analysis of surface roughness by AFM 45 5.6 The electrical properties 46 Chapter 6 P-type ZnO films grown on implanted silicon via thermal diffusion method 51 6.1 Formation of p-type ZnO films by thermal diffusion from the low-energy high-dose phosphorus implanted Si substrate 51 6.1.1 XRD analysis 52 6.1.2 XPS analysis 52 6.1.3 Room temperature Hall measurements 53 6.1.4 Rectification I-V characteristics 55 6.2 Effect of deposited substrate temperature 56 6.2.1 XRD analysis 56 6.2.2 SIMS depth profile and XPS analysis 57 6.2.3 Room temperature Hall measurements 58 6.2.4 Room-temperature photoluminescence spectra 60 6.3 Implantation dose effect on the p-type ZnO films 61 6.3.1 XRD analysis 61 6.3.2 XPS analysis 62 6.3.3 Room temperature Hall measurements 63 6.3.4 Preservation period of p-type ZnO flilms 64

    References
    [1] F. C. M. Van De Pol, Ceram. Bull. 69, 1959 (1990).
    [2] J. L. Zhao, X. M. Li, J. M. Bian, W. D. Yu and X. D. Gao J. Crystal Growth 276, 507 (2005)
    [3] Y. Zhang, G. Du, B. Zhang, Y. Cui, H. Zhu and Y. Chang, Semicond. Sci. Technol. 20, 1132 (2005)
    [4] J. H. Jou, and M.Y. Han, J. Appl. Phys. 71 4333 (1992)
    [5] Y. R. Ryu, S. Zhu, J. M. Wrobel, H. M. Jeong, P. F. Miceli, H. W. White, J. Crystal Growth 216, 326 (2000).
    [6] J. Yin, Z. G. Liu, X. S. Wang, T. Zhu, J. M. Liu, J. Crystal Growth 220, 281 (2000).
    [7] Y. Yan, M. M. Al-Jassim, M. F. Chisholm, L. A. Boatner, S. J. Pennycook and M. Oxley, Phys. Rev. B 71, 041309 (2005).
    [8] F. Oba, H. Ohta, Y. Sato, H. Hosono, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 70, 125415 (2004).
    [9] H. W. K. Tom, T. F. Heinz, Y. R. Shen, Phys. Rev. Lett. 51, 1983 (1983).
    [10] C. V. Shank, R. Yen and C. Hirlimann, Phys. Rev. Lett. 51, 900 (1983).
    [11] O. A. Aktsipetrov, A. A. Fedyanin, E. D. Mishina, A. N. Rubtsov, C. W. van Hasselt, M. A. C. Devillers, and Th. Rasing, Phys. Rev. B 54, 1825 (1996)
    [12] K. Y. Lo, J. Phys. D: Appl. Phys. 38, 3926 (2005)
    [13] G. Lüpke, Surface Science Reports 35, 75 (1999).
    [14] J. Y. Huang, Jpn. J. Appl. Phys. 33, 3878 (1994)
    [15] D. J. Bottomley, A. Mito, P. J. Fons, S. Niki and A. Yamada, IEEE J. Qunat. Elect. 33, 1294 (1997)
    [16] K. Y. Lo and Y. J. Huang, Jung Y. Huang, Z. C. Feng, W. E. Fenwick, M. Pan and I.T. Ferguson, Appl. Phys. Lett. 90, 161904 ( 2007)
    [17] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001)
    [18] S. B. Zhang, S. H. Wei, and Y. Yan, Physica B 135, 302 (2001)
    [19] S.Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, Phys. Rev. Lett. 92, 155504 (2004)
    [20] J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang, W. F. Liu, and G. T. Du Appl. Phys. Lett. 90, 121128 (2007)
    [21] K. H. Bang, D. K. Hwang, M. C. Park, Y. D. Ko, Ilgu Yun, and J. M. Myoung, Appl. Surf. Sci. 210, 177 (2003)
    [22] J. H. Lee, J. H. Ha, J. P. Hong, S. N. Cha, and U. Y. Paik, J.Vac. Sci. Technol. B 26, 1696 (2008)
    [23] H.W.K. Tom, T.F. Heinz, Y.R. Shen, Phys. Rev. Lett. 51 1983 (1983).
    [24] C.V. Shank, R. Yen and C. Hirlimann, Phys. Rev. Lett. 51, 900 (1983).
    [25] O. A. Aktsipetrov, A. A. Fedyanin, E. D. Mishina, A. N. Rubtsov, C. W. van Hasselt, M. A. C. Devillers, and Th. Rasing Phys. Rev. B 54, 1825 (1996)
    [26] K.Y. Lo, J. Phys. D: Appl. Phys. 38, 3926 (2005)
    [27] G. Lüpke, Surface Science Reports 35, 75 (1999).
    [28] J.Y. Huang, Jpn. J. Appl. Phys. 33, 3878 (1994)
    [29] D. J. Bottomley, A. Mito, P. J. Fons, S. Niki and A. Yamada, IEEE J. Qunat. Elect. 33, 1294 (1997)
    [30] I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, Jae-Woo Jeong and Sung-Chul Shin, Appl. Phys. Lett.76, 1848 (2000)
    [31] K.Y. Lo S.C. Lo, S.Y. Chu, R.C. Cheng and C.F. Yu, J. Cry. Growth. 290, 532 (2006)
    [32] Y. Yan, M. M. Al-Jassim, M. F. Chisholm, L. A. Boatner, S. J. Pennycook, and M. Oxley, Phys. Rev. B 71, 041309 (2005).
    [33] F. Oba, H. Ohta, Y. Sato, H. Hosono, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 70, 125415 (2004).
    [34] A. Yariv and P. Yeh, Optical waves in crystals, (John Wiley&Sons, Inc. New York) 1984, chap.12
    [35] L. Nanu, and A. G. R. Evans: Semicond. Sci. Technol. 4, 711 (1989).
    [36] V. A. Kagadei, and A. B. Markov: Micro-and Nanoelectronics Proc. Of SPIE 5401, 669 (2003).
    [37] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001)
    [38] S. B. Zhang, S. H. Wei, and Y. Yan, Physica B 135, 302 (2001)
    [39] K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park,
    Appl. Phys. Lett. 83, 63 (2003).
    [40] Y. W. Heo, S. J. Park, K. Ip, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett. 83, 1128 (2003).
    [41] Y. W. Heo, K. Ip, S. J. Park, S. J. Pearton, and D. P. Norton, Appl. Phys. A: Mater. Sci. Process. 78, 53 (2004).
    [42] K.-H. Bang, D.-K. Hwang, M.-C. Park, Y.-D. Ko, I. Yun, and J.-M. Myung, Appl. Surf. Sci. 210, 177 (2003).
    [43] T. Aoki, Y. Hatanaka, and D. C. Look, Appl. Phys. Lett. 76, 3257 (2000).
    [44] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Cryst. Growth 216, 330 (2000); Y. R. Ryu, T. S. Lee, and H. W. White, Appl. Phys. Lett. 83, 87 (2003).
    [45] D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, Appl. Phys. Lett. 85, 5269 (2004).
    [46] A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
    [47] C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
    [48] W. J. Lee, J. G. Kang, and K. J. Chang Phys. Rev. B 73, 024117 (2006)
    [49] R. Q. Ding, H. Q. Zhu, and Y. Wang, Materials Letters 62, 498 (2008)
    [50] J. L. Zhao, X.M. Li, André Krtschil, Alois Krost, W. D. Yu, Y. W. Zhang, Y. F. Gu, and X. D. Gao, Appl. Phys. Lett. 90, 062118 (2007)
    [51] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
    [52] P. Bhattacharya, Semiconductor Optoelectronic Devices _Prentice Hall, New Jersey, (1997), Chap. 1.
    [53] W. Borchardt-Ott, Crystallography _Springer, New York, (1995), Chap. 13.
    [54] V. Gupta and A. Mansingh, J. Appl. Phys. 80, 1063 (1996).
    [55] H. P. He, F. Zhuge, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao, and J. Y. Huang, J. Appl. Phys. 99, 023503 (2006).
    [56] G. Du, J.Wang, X.Wang, X. Jiang, S. Yang, Y. Ma,W. Yan, D. Gao, X. Liu, H. Cao, J. Xu, R.P.H. Chang, J. Cryst. Growth 243 (2003) 439.
    [57] C. M. Kim, S. J. Kim, and C. M. Lee, Jpn. J. Appl. Phys. 44, 8501 (2005)
    [58] K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, J. H. Song, J. App. Phys. 87, 3573, (2000)
    [59] R. Ondo-Ndong, G. Ferblantier, M. Al Kalfioui, A. Boyer, and A. Foucaran, J. Cryt. Growth 255, 130, (2003)
    [60] K. Y. Lo, S. C. Lo, C. F. Yu, T. Tite, J. Y. Huang, Y. J. Huang, R. C. Chang, and S. Y. Chu, Appl. Phys. Lett. 92, 091909, (2008)
    [61] A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Clarendon Press, Oxford, (1995)
    [62] W. Wunderlich, Phys. Stat. Sol. (a) 170, 99 (1998)
    [63] S. Solmi, M. Ferri, M. Bersani, D. Giubertoni, and V. Soncini: J. Appl. Phys. 94 4950 (2003).
    [64] F. F. Komarov, O. I. Velichko, V. A. Dobrushkin, and A.M. Mironov: Phys. Rev. B 74 035205 (2006).
    [65] P. A. Packan and J. D. Plummer: Appl. Phys. Lett. 56 1787 (1990).
    [66] S. Ruffell, I. V. Mitchell, and P. J. Simpson: J. Appl. Phys. 97 123518 (2005).
    [67] R. D. Chang, Philip S. Choi, D. L. Kwong, Mark Gardner, and Paul K. Chu: Jpn. J. Appl. Phys. 41 1220 (2002).
    [68] S. Solmi, and D. Nobili: J. Appl. Phys. 83 2484 (1998).
    [69] V. A. Kagadei, and A. B. Markov: Micro-and Nanoelectronics Proc. Of SPIE 5401 669 (2003).
    [70] V. A. Kagadei, and D. I. Proskurovsky: J. Vac. Sci. Technol. B 18 454 (2001).
    [71] P. B. Griffin, S. W. Crowder, and J. M. Knight: Appl. Phys. Lett. 67 24 (1995).
    [72] R. Duffy, V. C. Venezia, J. Loo, M. J. P. Hopstaken, M. A. Verheijen, J. G. M. van Berkum, G. C. J. Maas, Y. Tamminga, T. Dao, and C. Demeurisse: Appl. Phys. Lett. 86 081917 (2005).
    [73] Y. Sato, K. lmai, and N. Yabumoto: J. Electrochem. Soc. 144 2548 (1997).
    [74] E. H. Nicollian, and A. Chatterjee: J. Electrochem. Soc. 141 3580 (1994).
    [75] H. R. Soleimani: J. Electrochem. Soc. 141 2182 (1994).
    [76] Y. Kim, H. Z. Massoud, and R. B. Fair: J. Electron. Mater. 18 143 (1989).
    [77] H. S. Chao, S. W. Crowder, P. B. Griffin, and J. D. Plummer: J. Appl. Phys. 79 2352 (1996).
    [78] Patrick Henry Keys: Dr. Thesis, University of Florida (2001).
    [79] K. Y. Lo and Y. J. Huang, Phys. Rev. B 76, 035302 (2007)
    [80] B. Yao, Y. P. Xie, C. X. Cong, H. J. Zhao, Y. R. Sui, T. Yang, and Q. He, J. Phy. D: Appl. Phys. 42, 015407 (2009)
    [81] Hideo Asahina and Akira Morita, J. Phys. C: Solid State Phys., 17, 1839-1852 (1984)
    [82] W. J. Lee, J.G. Kang, and K.J. Chang, Phys. Rev. B 73, 024117 (2006)
    [83] D. C. Look, and B. Claflin, Phys. Stat. Sol. (b) 241, 624(2004)
    [84] S. A. Huang, K.Y. Lo, L.H. Hsu and K.M. Hung, Appl. Phys. Lett. 92, 061901 (2008).
    [85] P. Wang, N. F. Chen, and Z. G. Yin Appl. Phys. Lett. 88, 152102 (2006)
    [86] M. Y. Tsai, F. F. Morehead, J. E. E. Baglin, and A. E. Michel, J. Appl. Phys., 51, 3230 (1980).
    [87] G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B, 49, 11159 (1994)
    [88] J. C. Fan, C. Y. Zhu, S. Fung, Y. C. Zhong, K. S. Wong, Z. Xie, G. Brauer, W. Anwand, W. Skorupa, C. K. To, B. Yang, C. D. Beling, C. C. Ling, J. Appl. Phys., 106, 073709 (2009).
    [89] T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, and T. G. Khulordava, J. Cryst. Growth,, 117, 366 (1992).
    [90] S. H. Jeong, B. S. Kim, and B. T. Lee, Appl. Phys. Lett., 82, 2625 (2003).
    [91] Y. M. Sun, Ph.D. thesis, University of Science and Technology of China, July,

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE