簡易檢索 / 詳目顯示

研究生: 曾昱翔
Zeng, Yu-Siang
論文名稱: p-NiO電子阻障層於p-Cu2O/n-ZnO異質接面之逆向偏壓與自供電之光檢測器特性研究
A study of reverse voltage biased and self-powered characteristics of the p-Cu2O/n-ZnO heterojunction photodetectors with a p-NiO electron-blocking layer
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 82
中文關鍵詞: 氧化鎳氧化亞銅氧化鋅自供電電子阻障層紫外光/可見光光檢測器
外文關鍵詞: NiO, Cu2O, ZnO, self-power, electron block layer, ultraviolet/visible, photodetector
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究氧化鎳電子阻障層對於氧化亞銅/氧化鋅異質接面光檢測器在偏壓與自供電(self-powered)時之特性影響。首先將氧化鎳溶液旋轉塗佈於ITO透明導電玻璃基板,再放進烤箱擴散與退火,接著將退火完的元件浸入硫酸銅水溶液且用電化學沉積法沉積氧化亞銅,緊接著將元件濺鍍氧化鋅晶種層於氧化亞銅上,再使用化學水浴沉積法合成氧化鋅奈米柱陣列,最後在氧化鋅奈米柱陣列上濺鍍鉑電極,完成氧化鎳/氧化亞銅/氧化鋅異質光檢測器。
    接著量測與分析有無氧化鎳會對於氧化亞銅/氧化鋅異質接面光檢測器特性之影響。擁有氧化鎳之光檢測器在照射450 nm波長之可見光且自供電條件下光暗電流比值為115.08,此結果歸因於氧化鎳為寬能隙P型半導體,對於氧化亞銅之傳導帶有很高的位能障,控制光產生電子的擴散方向,因此照射450 nm波長之可見光時能有效傳輸光產生電子,避免電子往ITO電極擴散而導致電子電洞對的覆合與減少漏電流,由此可知,氧化鎳為有效的電子阻障層。
    當照射370 nm波長之紫外光下,量測氧化鎳/氧化亞銅/氧化鋅異質接面所構成之光檢測器, PD在逆向偏壓-1V和自供電模式(0V)下的上升時間分別為66.7s和62ms。 下降時間分別為119秒和24ms,-1V偏壓下的響應時間遠長於零偏壓,由於在自供電時並無逆向偏壓下所提供的外部電子注入,使得產生率約等於覆合率。當逆向偏壓時,由於有大量的電子從ITO側注入,並穿隧氧化鎳,且因為氧化鋅奈米柱材料特性,在照光後使光產生電洞與電子覆合,使產生率遠大於覆合率,進而增加了上升時間,而未照光時之電子電洞對覆合率也降低,因此延長了下降時間。
    在逆向偏壓條件下,具有電子阻障層的PD之光電流低於沒有阻障層的PD,由於NiO電子阻障層降低了外部電子注入的能力,使電子隧穿的可能性降低。
    本研究之元件具有低成本、製程簡易、低耗能、響應速度快之優點,因此相當有潛力作為光檢測器。

    This thesis investigated the reverse biased and self-powered characteristics of the p-Cu_2 O/n-ZnO nanorod heterojunction photodetectors (PD) with a p-NiO electron-blocking layer. First, the nickel oxide solution was spin-coated on an indium tin oxide (ITO) transparent conductive glass substrate and followed by furnace annealing. The p-Cu_2 O film was then electrodeposited onto the p-NiO film and a ZnO seed layer was deposited on the Cu_2 O film using sputtering technique. Subsequently, the ZnO nanorod arrays were synthesized by chemical bath deposition method. Finally, the top electrode Pt film was sputtered onto the ZnO nanorod arrays with a shadow mask.
    Under 450 nm visible light illumination and at zero bias (i.e. self-powered), the photo/dark current ratio of the p-NiO/p-Cu_2 O/n-ZnO and p-Cu_2 O/n-ZnO PDs are 115.08 and 6.92, respectively. The significant improvement of the photo/dark current ratio can be attributed to the wide bandgap p-NiO layer, its higher conduction band edge than the cuprous oxide creates a high potential energy barrier for the photo-generated electrons. Because of the energy barrier, it prevent the electrons diffuse to the ITO electrode i.e. it controls the diffusion direction and reduce leakage current, the nickel oxide layer is acting as an effective electron-blocking layer.
    When the PD illuminated with 370nm ultraviolet light, the rise time of the PD under a reverse bias voltage of -1 V and at self-powered mode (0V) are 66.7 s and 62 ms, respectively. The fall times are 119 s and 24 ms, respectively. The fall time under -1 V bias is much longer than that of the zero bias. The much faster fall time at zero bias can be attributed to the fact that there is no external electron injection at zero bias, the carriers’ generation rate is approximately on the order of the recombination rate. In contrast to reverse bias mode, the external electron-injection is significant such that it requires much longer time to recover under a steady recombination rate.
    Under reverse biased condition, the photo current of the PD having an electron-blocking layer is lower than that of a PD without the blocking layer, the ability of external electron injection is reduced by the NiO electron blocking layer due to a lower chance of electron tunneling.
    The studied PD has great potential with advantages of low-cost, simple process, low energy consumption, and fast response time.

    口試合格證明……………………………………………………………I 中文摘要…………………………………………………………………II 英文摘要………………………………………………………………IV 目錄……………………………………………………………………VI 圖目錄…………………………………………………………………IX 表目錄………………………………………………………………XII 第一章 緒論 1 1-1 前言 1 1-2 材料特性 2 1-2-1 氧化亞銅(Cuprous Oxide)特性 2 1-2-2 氧化鋅(Zinc Oxide)特性 4 1-2-3 氧化鎳(Nickel Oxide)特性 6 1-3 研究動機 7 第二章 基礎理論 8 2-1 元件基礎理論 8 2-1-1 P-N接面 8 2-1-2 金屬-半導體接面 12 2-1-3 蕭基接觸 13 2-1-4 歐姆接觸 15 2-2 半導體光檢測器 16 2-2-1 光檢測器操作原理 16 2-2-2 光導體光檢測器 16 2-2-3 光二極體光檢測器 17 2-3 光檢測器之參數介紹 19 2-3-1 光響應度 19 2-3-2 響應速度 19 2-3-3 外部量子效率(EQE) 19 2-4 自偏壓效應(Self-power) 20 第三章 實驗方法及步驟 21 3-1 實驗材料 21 3-2 製程設備系統 22 3-2-1 方形高溫爐 23 3-2-2 旋轉塗佈機 24 3-2-3 電化學恆電位儀 25 3-2-4 真空濺鍍系統 27 3-3 薄膜分析及量測儀器 29 3-3-1 X光繞射光譜儀(XRD) 30 3-3-2 電性參數分析儀與氙燈光源(B1500) 32 3-3-3 場發射掃描式電子顯微鏡(FE-SEM) 33 3-3-4 紫外可視近紅外分光光譜儀 35 3-4 製程步驟與參數 36 3-4-1 氧化銦錫透明導電玻璃基板清洗過程 37 3-4-2 氧化鎳薄膜沉積 38 3-4-3 電化學沉積氧化亞銅薄膜 39 3-4-4 濺鍍氧化鋅(ZnO)晶種層 40 3-4-5 化學水浴合成法沉積氧化鋅奈米柱 41 3-4-6 濺鍍鉑電極 42 第四章 結果與討論 43 4-1 薄膜材料分析 43 4-1-1 場發射掃描式電子顯微鏡分析 43 4-1-2 X光繞射分析 49 4-1-3 紫外光可見光/近紅外光分光光譜儀分析 52 4-2 光檢測器電性分析 55 4-2-1 暗電流比較 55 4-2-2 光電流比較 57 4-2-3 響應時間比較與分析 59 4-2-4 短路電流與開路電壓比較 68 4-2-5 響應度比較與分析 71 第五章 結論及未來研究方向 75 5-1 結論 75 5-2 未來研究方向 75 參考文獻 76

    [1]Zhai, T., Fang, X., Liao, M., Xu, X., Zeng, H., Yoshio, B., & Golberg, D. (2009). A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors, 9(8), 6504-6529.
    [2]Peng, L., Hu, L., & Fang, X. (2013). Low‐dimensional nanostructure ultraviolet photodetectors. Advanced materials, 25(37), 5321-5328.
    [3]Game, O., Singh, U., Kumari, T., Banpurkar, A., & Ogale, S. (2014). ZnO (N)–Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor. Nanoscale, 6(1), 503-513.
    [4]Konstantatos, G., & Sargent, E. H. (2010). Nanostructured materials for photon detection. Nature nanotechnology, 5(6), 391.
    [5]Li, X., Gao, C., Duan, H., Lu, B., Wang, Y., Chen, L., ... & Xie, E. (2013). High‐Performance Photoelectrochemical‐Type Self‐Powered UV Photodetector Using Epitaxial TiO2/SnO2 Branched Heterojunction Nanostructure. Small, 9(11), 2005-2011.
    [6]Lupan, O., Chow, L., Chai, G., Chernyak, L., Lopatiuk‐Tirpak, O., & Heinrich, H. (2008). Focused‐ion‐beam fabrication of ZnO nanorod‐based UV photodetector using the in‐situ lift‐out technique. physica status solidi (a), 205(11), 2673-2678.
    [7]Walker, D., Monroy, E., Kung, P., Wu, J., Hamilton, M., Sanchez, F. J., ... & Razeghi, M. (1999). High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Applied physics letters, 74(5), 762-764.
    [8]Guo, F., Yang, B., Yuan, Y., Xiao, Z., Dong, Q., Bi, Y., & Huang, J. (2012). A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature nanotechnology, 7(12), 798.
    [9]Liao, M., Koide, Y., & Alvarez, J. (2005). Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact. Applied Physics Letters, 87(2), 022105.
    [10]Östlund, L., Wang, Q., Esteve, R., Almqvist, S., Rihtnesberg, D., Reshanov, S., ... & Kaplan, W. (2012). 4H‐and 6H‐SiC UV photodetectors. physica status solidi c, 9(7), 1680-1682.
    [11]Kokubun, Y., Miura, K., Endo, F., & Nakagomi, S. (2007). Sol-gel prepared β-Ga 2 O 3 thin films for ultraviolet photodetectors. Applied physics letters, 90(3), 031912.
    [12]Xie, Y., Huang, H., Yang, W., & Wu, Z. (2011). Low dark current metal-semiconductor-metal ultraviolet photodetectors based on sol-gel-derived TiO 2 films. Journal of Applied Physics, 109(2), 023114.
    [13]Chen, H., Hu, L., Fang, X., & Wu, L. (2012). General Fabrication of Monolayer SnO2 Nanonets for High‐Performance Ultraviolet Photodetectors. Advanced Functional Materials, 22(6), 1229-1235.
    [14]Lin, Y. Y., Chen, C. W., Yen, W. C., Su, W. F., Ku, C. H., & Wu, J. J. (2008). Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes. Applied Physics Letters, 92(23), 205.
    [15]Hatch, S. M., Briscoe, J., & Dunn, S. (2013). A Self‐Powered ZnO‐Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response. Advanced Materials, 25(6), 867-871.
    [16]Hansen, B. J., Liu, Y., Yang, R., & Wang, Z. L. (2010). Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS nano, 4(7), 3647-3652.
    [17]Bie, Y. Q., Liao, Z. M., Zhang, H. Z., Li, G. R., Ye, Y., Zhou, Y. B., ... & Yu, D. P. (2011). Self‐powered, ultrafast, visible‐blind UV detection and optical logical operation based on ZnO/GaN nanoscale p‐n junctions. Advanced Materials, 23(5), 649-653.
    [18]Wu, D., Jiang, Y., Zhang, Y., Yu, Y., Zhu, Z., Lan, X., ... & Luo, L. (2012). Self-powered and fast-speed photodetectors based on CdS: Ga nanoribbon/Au Schottky diodes. Journal of Materials Chemistry, 22(43), 23272-23276.
    [19]Gao, Z., Jin, W., Zhou, Y., Dai, Y., Yu, B., Liu, C., ... & Dai, L. (2013). Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale, 5(12), 5576-5581.
    [20]Zhai, T., Fang, X., Liao, M., Xu, X., Li, L., Liu, B., ... & Golberg, D. (2010). Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. Acs Nano, 4(3), 1596-1602.
    [21]Fang, X., Bando, Y., Liao, M., Zhai, T., Gautam, U. K., Li, L., ... & Golberg, D. (2010). An efficient way to assemble ZnS nanobelts as ultraviolet‐light sensors with enhanced photocurrent and stability. Advanced Functional Materials, 20(3), 500-508.
    [22]Chen, K., Sun, C., Song, S., & Xue, D. (2014). Polymorphic crystallization of Cu 2 O compound. CrystEngComm, 16(24), 5257-5267.
    [23]Fujimoto, K., Oku, T., & Akiyama, T. (2013). Fabrication and characterization of ZnO/Cu_2 O solar cells prepared by electrodeposition. Applied Physics Express, 6(8), 086503.
    [24]Musa, A. O., Akomolafe, T., & Carter, M. J. (1998). Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Solar Energy Materials and Solar Cells, 51(3-4), 305-316.
    [25]Deuermeier, J., Gassmann, J., Brötz, J., & Klein, A. (2011). Reactive magnetron sputtering of Cu_2 O: Dependence on oxygen pressure and interface formation with indium tin oxide. Journal of Applied Physics, 109(11), 113704.
    [26]Lee, J., & Tak, Y. (1999). Epitaxial Growth of Cu2 O (111) by Electrodeposition. Electrochemical and solid-state letters, 2(11), 559-560.
    [27]Chen, K., Sun, C., & Xue, D. (2015). Morphology engineering of high performance binary oxide electrodes. Physical Chemistry Chemical Physics, 17(2), 732-750.
    [28]Lee, Y. G., Wang, J. R., Chuang, M. J., Chen, D. W., & Hou, K. H. (2017). The effect of electrolyte temperature on the electrodeposition of cuprous oxide films. Int. J. Electrochem. Sci, 12, 507-516.
    [29]Kang, Z., Yan, X., Wang, Y., Bai, Z., Liu, Y., Zhang, Z., ... & Zhang, Y. (2015). Electronic structure engineering of Cu 2 O film/ZnO nanorods array all-oxide pn heterostructure for enhanced photoelectrochemical property and self-powered biosensing application. Scientific reports, 5, 7882.
    [30]Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11.
    [31]Xu, S., & Wang, Z. L. (2011). One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Research, 4(11), 1013-1098.
    [32]Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G., & Yang, P. (2005). General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano letters, 5(7), 1231-1236.
    [33]Kirkham, M., Wang, X., Wang, Z. L., & Snyder, R. L. (2007). Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process. Nanotechnology, 18(36), 365304.
    [34]Kumar, R. R., McGlynn, E., Biswas, M., Saunders, R., Trolliard, G., Soulestin, B., ... & Henry, M. O. (2008). Growth of ZnO nanostructures on Au-coated Si: Influence of growth temperature on growth mechanism and morphology. Journal of Applied Physics, 104(8), 084309.
    [35]Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., ... & Wang, D. (2007). ZnO nanowire UV photodetectors with high internal gain. Nano letters, 7(4), 1003-1009.
    [36]Du, G. T., Liu, W. F., Bian, J. M., Hu, L. Z., Liang, H. W., Wang, X. S., ... & Yang, T. P. (2006). Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis. Applied physics letters, 89(5), 052113.
    [37]Cao, B., & Cai, W. (2008). From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. The Journal of Physical Chemistry C, 112(3), 680-685.
    [38]Hewlett, R. M., & McLachlan, M. A. (2016). Surface structure modification of ZnO and the impact on electronic properties. Advanced Materials, 28(20), 3893-3921.
    [39]Hotový, I., Buc, D., Haščík, Š., & Nennewitz, O. (1998). Characterization of NiO thin films deposited by reactive sputtering. Vacuum, 50(1-2), 41-44.
    [40]Adler, D., & Feinleib, J. (1969). Band structure of magnetic semiconductors. Journal of Applied Physics, 40(3), 1586-1588.
    [41]Mrowec, S., & Grzesik, Z. (2004). Oxidation of nickel and transport properties of nickel oxide. Journal of Physics and Chemistry of Solids, 65(10), 1651-1657.
    [42]Caruge, J. M., Halpert, J. E., Wood, V., Bulović, V., & Bawendi, M. G. (2008). Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature photonics, 2(4), 247.
    [43]Waser, R., & Aono, M. (2007). BNanoionics-based resistive switching memories,[Nature Mater., vol. 6.
    [44]Gibson, E. A., Smeigh, A. L., Le Pleux, L., Fortage, J., Boschloo, G., Blart, E., ... & Hammarström, L. (2009). A p‐type NiO‐based dye‐sensitized solar cell with an open‐circuit voltage of 0.35 V. Angewandte Chemie International Edition, 48(24), 4402-4405.
    [45]Ohta, H., Kamiya, M., Kamiya, T., Hirano, M., & Hosono, H. (2003). UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO. Thin Solid Films, 445(2), 317-321.
    [46]Choi, J. M., & Im, S. (2005). Ultraviolet enhanced Si-photodetector using p-NiO films. Applied Surface Science, 244(1-4), 435-438.
    [47]Sang, L., Hu, J., Zou, R., Koide, Y., & Liao, M. (2013). Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures. Scientific reports, 3, 2368.
    [48]Chang, X., Wang, Y. F., Zhang, X., Liu, Z., Fu, J., Fan, S., ... & Wang, J. (2018). UV-photodetector based on NiO/diamond film. Applied Physics Letters, 112(3), 032103.
    [49]Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. John wiley & sons.
    [50]Hu, C. (2010). Modern semiconductor devices for integrated circuits (Vol. 2). Upper Saddle River, NJ: Prentice Hall.
    [51]Neamen, D. A. (1997). Semiconductor Physics & Devices: Basic Principles, Irwin, The McGrae-Hill Companies.
    [52]Shen, Y., Yan, X., Bai, Z., Zheng, X., Sun, Y., Liu, Y., ... & Zhang, Y. (2015). A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. RSC Advances, 5(8), 5976-5981.
    [53]Bard, A. J., Faulkner, L. R., Leddy, J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals and applications (Vol. 2). New York: wiley.
    [54]蕭宏(2018).半導體製程技術導論(Vol. 3).全華出版社.
    [55]鄭信民,林麗娟(2002).X光繞射應用簡介.工業材料雜誌.181期,
    [56] Al-Ghamdi, A. A., Mahmoud, W. E., Yaghmour, S. J., & Al-Marzouki, F. M. (2009). Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method. Journal of Alloys and Compounds, 486(1-2), 9-13.
    [57]Paracchino, A., Brauer, J. C., Moser, J. E., Thimsen, E., & Graetzel, M. (2012). Synthesis and characterization of high-photoactivity electrodeposited Cu_2 O solar absorber by photoelectrochemistry and ultrafast spectroscopy. The Journal of Physical Chemistry C, 116(13), 7341-7350.
    [58]Brandt, I. S., Tumelero, M. A., Pelegrini, S., Zangari, G., & Pasa, A. A. (2017). Electrodeposition of Cu 2 O: growth, properties, and applications. Journal of Solid State Electrochemistry, 21(7), 1999-2020.
    [59]羅聖全,"研發奈米科技的基本工具之一-電子顯微鏡介紹-SEM,"材料世界網,2008
    [60]Li, Q., Bian, J., Sun, J., Wang, J., Luo, Y., Sun, K., & Yu, D. (2010). Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Applied Surface Science, 256(6), 1698-1702.
    [61]Sun, Y., Fox, N. A., Riley, D. J., & Ashfold, M. N. (2008). Hydrothermal growth of ZnO nanorods aligned parallel to the substrate surface. The Journal of Physical Chemistry C, 112(25), 9234-9239.

    下載圖示 校內:2024-06-28公開
    校外:2024-06-28公開
    QR CODE