簡易檢索 / 詳目顯示

研究生: 廖悟涵
Liao, Wu-Han
論文名稱: 無鉛(Ba,Ca)(Ti,Sn,Hf)織構化摻雜MnCO3壓電陶瓷在還原氣氛下之特性影響與應用於壓電馬達之研究
Effect of MnCO3- Doped (Ba, Ca) (Ti, Sn, Hf) Textured Lead-Free Piezoelectric Ceramics in Reducing Atmosphere and the Application of Piezoelectric Motors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 125
中文關鍵詞: 無鉛織構化壓電陶瓷低氧分壓燒結超音波馬達胰島素針筒
外文關鍵詞: Lead-free textured piezoelectric ceramics, low oxygen partial pressure sintering, ultrasonic motors, insulin syringes
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在開發高抗還原能力之無鉛織構化壓電陶瓷(Ba,Ca)(Ti,Sn,Hf)O3+2mol%Li2CO3+2mol%MnCO3摻雜片狀優選取向模板BaTiO3 (BCTSHML+BT template),成功使用沿流成型法堆疊層壓,置於大氣中低於1300˚C燒結溫度製備出<001>方向高取向性陶瓷,Lottgering factor值最高達93%,添加3wt%BT模板壓電特性d33 = 384 pC/N、-d31=160(pC/N),並研究了奧斯瓦爾德熟成過程與晶粒模板成長對應的微結構,發現AGS從2.8µm上升到4.69µm,陶瓷密度也從原本的5.73上升到5.97,這對於絕緣阻抗有很大的幫助。本實驗利用Mn2+離子取代Ti4+離子提高在還原氣氛下的抗性,而後進一步研究了織構化在低氧分壓下PO2:10-8的壓電、介電特性,發現抗還原能力較隨機取向高,且在低氧分壓下Qm從308上升到452,d33 = 324 pC/N、-d31達122 pC/N、電阻率還保有 3.04 (GΩ×cm)。還原氣氛中燒結織構化陶瓷具有高d31與Qm適合應用於超音波馬達元件,在120Vp-p左推速0.4 mm/s、右推速達0.5mm/s,推力約0.4N,能夠使商業化1ml針筒精準穩定推出1~5單位之胰島素溶液。

    This research focuses on the development of lead-free textured piezoelectric ceramics (Ba,Ca)(Ti,Sn,Hf)O3+2mol%Li2CO3+2mol%MnCO3 with high anti-reduction ability. The preferred orientation template BaTiO3 (BCTSHML+BT) template), successfully laminated along the tape casting method, placed in the atmosphere below 1300˚C sintering temperature to prepare the <001> direction highly oriented ceramics, the Lottgering factor value is up to 93%, and 3wt% BT template piezoelectric is added Characteristics d33 = 384 pC/N, -d31=160 pC/N, and the corresponding grain template growth It is found that the AGS has risen from 2.8µm to 4.69µm, and the ceramic density has also risen from 5.73 to 5.97, which greatly helps the insulation resistance. In this experiment, Mn2+ ions were used to replace Ti4+ ions to improve the resistance under reducing atmosphere, and then the piezoelectric and dielectric properties of PO2:10-8 under low oxygen partial pressure were further studied. It was found that the resistance to reduction was more random in orientation. High, and Qm rises from 308 to 452 under low oxygen partial pressure, d33 = 324 pC/N, -d31 reaches 122 (pC/N). The textured ceramic sintered in a reducing atmosphere has high d31 and Qm, suitable for ultrasonic motor components,the thrust is about 0.4N, which can be commercialized The 1ml syringe accurately and stably releases 1~5 units of insulin solution.

    摘要 II Extended Abstract III 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1. 前言 1 1.2研究背景與動機 2 1.3 論文架構 4 第二章基礎理論與文獻回顧 5 2.1 壓電材料 5 2.1.1. 材料晶格與晶系 6 2.1.2. 正壓電效應 7 2.1.3. 逆壓電效應 8 2.1.4. 壓電諧振體 9 2.1.5. 壓電單晶體 11 2.1.6. 壓電多晶體 11 2.2 壓電材料操作方向與模式 13 2.3 壓電方程式 14 2.4 介電效應 17 2.5 鐵電效應 20 2.6 鈦酸鋇材料系列 21 2.7 織構化(textured)陶瓷演進 22 2.7.1 兩步法製備片狀BaTiO3模板 22 2.7.2 模板晶粒成長法(Template Grain Growth) 25 2.8 積層壓電陶瓷(MLPC) 27 2.9 超音波馬達 29 2.9.1 超音波馬達發展歷史 29 2.9.2 螺桿式超音波馬達 30 第三章實驗流程與量測 33 3.1 壓電陶瓷體的製作 33 3.1.1 基體BCTSH陶瓷粉末的製備 33 3.1.2 BaTiO3片狀模板的製備 33 3.2 陶瓷薄帶的製備與設備介紹 35 3.2.1 漿料的製備 35 3.2.2 薄帶生胚製作 35 3.2.3 堆疊 38 3.2.4 熱水均壓 38 3.2.5 除膠(Binder Burn Out)與燒結(Sintering) 39 3.3 陶瓷體特性分析與量測 43 3.3.1 密度 43 3.3.2 XRD 44 3.3.3 SEM 44 3.3.4 電性量測 45 3.3.5 相轉變點量測 52 3.3.6 壓電溫度穩定性 53 3.3.7 鐵電性疲勞與隨時間老化(retention)量測 53 3.3.8 應變(Strain)量測 54 3.4 超音波馬達的設計 55 3.4.1 螺桿式超音波馬達 55 3.4.2 線性超音波馬達性能量測系統 57 3.4.3 超音波馬達的驅動頻率 58 第四章材料部份實驗結果與討論 59 4.1 BCTSH+2 mol%Li2CO3+a mol%MnCO3 60 4.1.1 大氣中燒結之XRD、SEM與密度分析 60 4.1.2 在還原氣氛下燒結之XRD、SEM與緻密性分析 63 4.1.3 分析壓電特性與介電性&XPS 68 4.2 織構化BCTSH+2mol%Li2CO3+2 mol%MnCO3+a wt%BaTiO3模板 73 4.2.1 BaTiO3模板製作與奧斯瓦爾特熟成 73 4.2.2 XRD、SEM與密度分析 76 4.3 BCTSH+2 mol%Li2CO3+2 mol%MnCO3摻雜不同重量百分比BaTiO3模板在不同氧分壓下燒結 89 4.3.1 低氧分壓下燒結BCTSHML單層陶瓷摻雜不同重量百分比BaTiO3模板之SEM與密度分析 90 4.3.2 cole-cole plot與活化能分析 95 4.3.3 低氧分壓下織構化陶瓷壓電特性分析 104 4.4 壓電馬達元件結果與討論 108 4.4.1 不同氧分壓織構化壓電馬達的驅動頻率 109 4.4.2 不同氧分壓織構化壓電馬達的推速與元件升溫量測 110 4.4.3 織構化壓電馬達推力量測與推動市售醫療針筒 112 第五章結論與未來展望 117 5.1 結論 117 5.2 未來展望 118 參考文獻 119

    [1] W. Groen, K. Prijs, S. Saeed, "Dependence of piezoelectric properties on layer thickness for multilayer actuators", "Integrated Ferroelectrics" vol. 115, no. 1,pp. 132-141,2010.
    [2] https://zh.wikipedia.org/zh-tw/危害性物質限制指令, "Restriction of Hazardous Substances Directive 2002/95/EC", vol. no.,pp.,2020.
    [3] Z. Wang et al., "Design of p‐type NKN‐based piezoelectric ceramics sintered in low oxygen partial pressure by defect engineering", "Journal of the American Ceramic Society" vol. 103, no. 6,pp. 3667-3675,2020.
    [4] P. C. a. J. curie, "Bull.Soc.Min.de France", vol. no.,pp. 90,1880.
    [5] W. G. Hankel, "Abh. Sachs", vol. no.,pp. 457,1881.
    [6] W. G. Hankel, "Ber. Sachs", vol. no.,pp. 52,1881.
    [7] 李. 孫. 朱建國, "電子與光電材料", "北京國防工業出版社" vol. no.,pp.,2007.
    [8] a. D. T. F. Seitz, "Solid State Physics", vol. 7, no.,pp.,1958.
    [9] 吳朗, "電子陶瓷-壓電", "全欣科技圖書" vol. 7, no.,pp.,1994.
    [10] 陳宗佑, "Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 系壓電陶瓷之製作及其應用", "國立成功大學電機工程學系研究所碩士論文" vol. no.,pp.,2009.
    [11] vol. no.,pp.,!!! INVALID CITATION !!! .
    [12] A. M. Badr, H. A. Elshaikh, I. M. Ashraf, "Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals", "Journal of Modern Physics" vol. 2011, no.,pp.,2011.
    [13] Y. Liao. (Global Sino, 2006).
    [14] W. Li, Z. Xu, R. Chu, H. Zeng, K. Zhao, "Enlarged polymorphic phase transition boundary and enhanced piezoelectricity in ternary component 0.8 Ba1− xCaxTiO3–0.1 BaTi0. 8Zr0. 2O3–0.1 BaTi0. 9Sn0. 1O3 ceramics", "Materials Letters" vol. 110, no.,pp. 80-82,2013.
    [15] C. Zhao, Y. Feng, H. Wu, J. Wu, "Phase boundary design and high piezoelectric activity in (1− x)(Ba0. 93Ca0. 07) TiO3-xBa (Sn1− yHfy) O3 lead-free ceramics", "Journal of Alloys and Compounds" vol. 666, no.,pp. 372-379,2016.
    [16] K. Okazaki, S. Narushima, "Electrical properties of the hot-pressed SbSI polycrystals", "J Ceram Soc Jpn" vol. 76, no. 869,pp. 21,1968.
    [17] 木村敏夫, "Application of texture engineering to piezoelectric ceramics-A review", "Journal of the Ceramic Society of Japan (日本セラミックス協会学術論文誌)" vol. 114, no. 1325,pp. 15-25,2006.
    [18] B. S. Brahmaroutu, "Templated grain growth of textured strontium niobate ceramics", vol. no.,pp.,2000.
    [19] B. Brahmaroutu, G. L. Messing, S. Trolier‐McKinstry, "Molten salt synthesis of anisotropic Sr2Nb2O7 particles", "Journal of the American Ceramic Society" vol. 82, no. 6,pp. 1565-1568,1999.
    [20] X. Jing, Y. Li, Q. Yang, J. Zeng, Q. Yin, "Influence of different templates on the textured Bi0. 5 (Na1− xKx) 0.5 TiO3 piezoelectric ceramics by the reactive templated grain growth process", "Ceramics international" vol. 30, no. 7,pp. 1889-1893,2004.
    [21] L. Liu, "Progress on the fabrication of lead-free textured piezoelectric ceramics: perspectives over 25 years", "Journal of Materials Science: Materials in Electronics" vol. 26, no. 7,pp. 4425-4437,2015.
    [22] R.-h. LIAO et al., "Preparation of Plate-like NaNbO_3 Crystal by Two-step Molten Salt Method [J]", "Journal of Synthetic Crystals" vol. 5, no.,pp.,2010.
    [23] X. Yan, F. Gao, Z. Liu, "Synthesis of high aspect ratio platelike Ba1− xCaxTiO3 particles by topochemical microcrystal conversion method", "Ceramics International" vol. 40, no. 3,pp. 4927-4932,2014.
    [24] P. W. Voorhees, "The theory of Ostwald ripening", "Journal of Statistical Physics" vol. 38, no. 1-2,pp. 231-252,1985.
    [25] S. Huo, M. Qian, G. Schaffer. (Oxford: Woodhead Publishers, 2011).
    [26] T. G. Lee et al., "Structural and piezoelectric properties of< 001> textured PZT‐PZNN piezoelectric ceramics", "Journal of the American Ceramic Society" vol. 100, no. 12,pp. 5681-5692,2017.
    [27] N. J. Donnelly, T. R. Shrout, C. A. Randall, "The Role of Li2CO3 and PbO in the Low‐Temperature Sintering of Sr, K, Nb (SKN)‐Doped PZT", "Journal of the American Ceramic Society" vol. 92, no. 6,pp. 1203-1207,2009.
    [28] L. Gao et al., "Atmospheric controlled processing enabling highly textured NKN with enhanced piezoelectric performance", "Journal of the European Ceramic Society" vol. 39, no. 4,pp. 963-972,2019.
    [29] H. Gong, X. Wang, S. Zhang, Z. Tian, L. Li, "Electrical and reliability characteristics of Mn-doped nano BaTiO3-based ceramics for ultrathin multilayer ceramic capacitor application", "Journal of Applied Physics" vol. 112, no. 11,pp. 114119,2012.
    [30] A. Honda, S. i. Higai, Y. Motoyoshi, N. Wada, H. Takagi, "Theoretical study on interactions between oxygen vacancy and doped rare-earth elements in barium titanate", "Japanese Journal of Applied Physics" vol. 50, no. 9S2,pp. 09NE01,2011.
    [31] I.-T. Seo et al., "Multilayer piezoelectric haptic actuator with CuO-modified PZT-PZNN ceramics", "Sensors and Actuators A: Physical" vol. 238, no.,pp. 71-79,2016.
    [32] M. Laurent et al., in 14th IEEE International Symposium on Applications of Ferroelectrics, 2004. ISAF-04. 2004. (IEEE, 2004), pp. 60-63.
    [33] A. W. a. W. Brown, "Piezoelectric motor", "US-patent: 2439499" vol. no.,pp.,1942.
    [34] H. Barth, "Ultrasonic driven motor", "IBM Tech. Disclosure Bull." vol. 16, no.,pp. 2263,1973.
    [35] K. Uchino, "超音波モータ", "精密工学会誌" vol. 55, no.,pp. 485-490,1989.
    [36] J. Zhang, H. Zhu, C. Zhao, "Contact analysis and modeling of a linear ultrasonic motor with a threaded output shaft", "Journal of electroceramics" vol. 29, no. 4,pp. 254-261,2012.
    [37] D. Henderson, "Simple ceramic motor... inspiring smaller products", "Stroke (mm)" vol. 50, no. 10,pp.,2006.
    [38] 陳泓儒, "燒結溫度與極化條件於無鉛壓電陶瓷(Na, K)(Nb, Sb)O3–LiTaO3 (NKLNTS)的影響與應用", "國立臺南大學材料科學系碩士班碩士論文" vol. no.,pp.,2015.
    [39] A. J. Moulson, J. M. Herbert, Electroceramics: materials, properties, applications. (John Wiley & Sons, 2003).
    [40] D. A. Henderson, "Piezo ceramic motors improve phone camera auto focus and zoom", "article in www. squiggle. com" vol. no.,pp.,2005.
    [41] J.-T. Zhang, W.-Q. Huang, H. Zhu, C.-S. Zhao, "Lead screw linear ultrasonic motor using bending vibration modes", "Transactions of Nanjing University of Aeronautics & Astronautics" vol. 26, no. 2,pp. 89-94,2009.
    [42] 蕭仕偉, "新型壓電振動子之研發及其超音波馬達設計應用", "成功大學機械工程學系學位論文" vol. no.,pp. 1-89,2011.
    [43] 趙偉翔, "(Ba, Ca)(Ti, Sn, Hf) O3 摻雜 MnO2 無鉛壓電陶瓷與應用於壓電超音波馬達之研究", vol. no.,pp.,2017.
    [44] W. Sakamoto, K. Noritake, H. Ichikawa, K. Hayashi, T. Yogo, "Fabrication and properties of nonreducible lead-free piezoelectric Mn-doped (Ba, Ca) TiO3 ceramics", "Ceramics International" vol. 43, no.,pp. S166-S171,2017.
    [45] H. Hayashi et al., "Reliability of nickel inner electrode lead-free multilayer piezoelectric ceramics", "Japanese Journal of Applied Physics" vol. 51, no. 9S1,pp. 09LD01,2012.
    [46] S. Kawada, M. Kimura, Y. Higuchi, H. Takagi, "(K, Na) NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes", "Applied physics express" vol. 2, no. 11,pp. 111401,2009.
    [47] L. Chen et al., "Effect of MnO2 on the dielectric properties of Nb‐doped BaTiO3‐(Bi0. 5Na0. 5) TiO3 ceramics for X9R MLCC applications", "Journal of the American Ceramic Society" vol. 102, no. 5,pp. 2781-2790,2019.
    [48] B. Dai et al., "Piezoelectric grain-size effects of BaTiO 3 ceramics under different sintering atmospheres", "Journal of Materials Science: Materials in Electronics" vol. 28, no. 11,pp. 7928-7934,2017.
    [49] K. Kinoshita, A. Yamaji, "Grain‐size effects on dielectric properties in barium titanate ceramics", "Journal of applied physics" vol. 47, no. 1,pp. 371-373,1976.
    [50] H. Takahashi et al., "Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering", "Japanese journal of applied physics" vol. 45, no. 1L,pp. L30,2005.
    [51] T. Karaki, K. Yan, M. Adachi, "Barium titanate piezoelectric ceramics manufactured by two-step sintering", "Japanese Journal of Applied Physics" vol. 46, no. 10S,pp. 7035,2007.
    [52] W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, "Large Piezoelectric Coefficient in (Ba 1− x Ca x)(Ti0. 96Sn0. 04) O3 Lead‐Free Ceramics", "Journal of the American Ceramic Society" vol. 94, no. 12,pp. 4131-4133,2011.
    [53] M. Chen et al., "Enhanced piezoelectricity in broad composition range and the temperature dependence research of (Ba1− xCax)(Ti0. 95Sn0. 05) O3 piezoceramics", "Physica B: Condensed Matter" vol. 433, no.,pp. 43-47,2014.
    [54] W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, "Enhanced ferroelectric properties in (Ba1− xCax)(Ti0. 94Sn0. 06) O3 lead-free ceramics", "Journal of the European Ceramic Society" vol. 32, no. 3,pp. 517-520,2012.
    [55] Y. Li, X. Yao, X. Wang, L. Zhang, "Studies of resistivity and dielectric properties of manganese-doped barium titanate sintered in pure nitrogen", "Ferroelectrics" vol. 384, no. 1,pp. 73-78,2009.
    [56] H. Kishi, Y. Mizuno, H. Chazono, "Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives", "Japanese journal of applied physics" vol. 42, no. 1R,pp. 1,2003.
    [57] H. Ichikawa et al., "Fabrication and characterization of (100),(001)-oriented reduction-resistant lead-free piezoelectric (Ba, Ca) TiO3 ceramics using platelike seed crystals", "Japanese Journal of Applied Physics" vol. 52, no. 9S1,pp. 09KD08,2013.
    [58] F. Gao et al., "Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method", "Ceramics International" vol. 41, no. 1,pp. 127-135,2015.
    [59] S. Ye, J. Fuh, L. Lu, "Structure and electrical properties of< 001> textured (Ba0. 85Ca0. 15)(Ti0. 9Zr0. 1) O3 lead-free piezoelectric ceramics", "Applied Physics Letters" vol. 100, no. 25,pp. 252906,2012.
    [60] W. Bai, J. Hao, B. Shen, F. Fu, J. Zhai, "Processing optimization and piezoelectric properties of textured Ba (Zr, Ti) O3 ceramics", "Journal of alloys and compounds" vol. 536, no.,pp. 189-197,2012.
    [61] W. Bai et al., "Enhanced electromechanical properties in< 00l>-textured (Ba0. 85Ca0. 15)(Zr0. 1Ti0. 9) O3 lead-free piezoceramics", "Ceramics International" vol. 42, no. 2,pp. 3429-3436,2016.
    [62] W. Bai, B. Shen, F. Fu, J. Zhai, "Dielectric, ferroelectric, and piezoelectric properties of textured BZT–BCT lead-free thick film by screen printing", "Materials Letters" vol. 83, no.,pp. 20-22,2012.
    [63] G. Hu et al., "Fabrication and electrical properties of textured Ba (Zr 0.2 Ti 0.8) O 3–(Ba 0.7 Ca 0.3) TiO 3 ceramics using plate-like BaTiO 3 particles as templates", "Journal of Materials Science: Materials in Electronics" vol. 25, no. 4,pp. 1817-1827,2014.
    [64] G. Liu et al., "Colossal low-frequency resonant magnetomechanical and magnetoelectric effects in a three-phase ferromagnetic/elastic/piezoelectric composite", "Applied Physics Letters" vol. 101, no. 14,pp. 142904,2012.
    [65] B.-W. Xun, Y.-C. Tang, J.-Y. Chen, B.-P. Zhang, "Enhanced resistance in Bi (Fe1-xScx) O3-0.3 BaTiO3 lead-free piezoelectric ceramics: Facile analysis and reduction of oxygen vacancy", "Journal of the European Ceramic Society" vol. 39, no. 14,pp. 4085-4095,2019.
    [66] Y.-I. Jung, S.-Y. Choi, S.-J. L. Kang, "Effect of oxygen partial pressure on grain boundary structure and grain growth behavior in BaTiO3", "Acta materialia" vol. 54, no. 10,pp. 2849-2855,2006.
    [67] K.-S. Moon, Y.-M. Kang, I. Han, S.-E. Lee, "Grain growth behavior of Ba1. 5Sr1. 5Co2Fe24O41 flakes in molten salt synthesis and the magnetic properties of flake/polymer composites", "Journal of Applied Physics" vol. 120, no. 19,pp. 194102,2016.
    [68] M. K. Adak, D. Dhak, "Assessment of strong relaxation on BaTiO3 modified by Mn2+ and Pr3+, K+ at A− and B− site respectively", "Materials Research Express" vol. 6, no. 12,pp. 125082,2019.
    [69] S. Praharaj, D. Rout, S. Anwar, V. Subramanian, "Polar nano regions in lead free (Na0. 5Bi0. 5) TiO3-SrTiO3-BaTiO3 relaxors: An impedance spectroscopic study", "Journal of Alloys and Compounds" vol. 706, no.,pp. 502-510,2017.
    [70] S. STEINSVIK, R. BUGGE, J. GjØNnes, J. TAFTØ, T. Norby, "The defect structufe of SrTi1− xFexO3− y (x= 0–0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS)", "Journal of Physics and Chemistry of Solids" vol. 58, no. 6,pp. 969-976,1997.
    [71] A. Jonscher, "A new understanding of the dielectric relaxation of solids", "Journal of materials science" vol. 16, no. 8,pp. 2037-2060,1981.
    [72] C.-M. Weng et al., "Effects of post-annealing on electrical properties of CuF2• xH2O-doped KNN ceramics for rotary-linear ultrasonic motors", "Ceramics International" vol. 44, no. 14,pp. 16173-16180,2018.
    [73] L. Liu et al., "Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0. 5K0. 5NbO3 ceramics", "Materials Chemistry and Physics" vol. 117, no. 1,pp. 138-141,2009.
    [74] Y. Wang, Y. Pu, P. Zhang, "Investigation of dielectric relaxation in BaTiO3 ceramics modified with BiYO3 by impedance spectroscopy", "Journal of Alloys and Compounds" vol. 653, no.,pp. 596-603,2015.
    [75] T.-h. Cheng, X.-d. Guo, G. Bao, H. Gao, C.-f. Xiao, in 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). (IEEE, 2012), pp. 270-273.
    [76] X. Li, J. Chen, Z. Chen, S. Dong, "A high-temperature double-mode piezoelectric ultrasonic linear motor", "Applied Physics Letters" vol. 101, no. 7,pp. 072902,2012.
    [77] X. Li, P. Ci, G. Liu, S. Dong, "A two-layer linear piezoelectric micromotor", "IEEE transactions on ultrasonics, ferroelectrics, and frequency control" vol. 62, no. 3,pp. 405-411,2015.
    [78] D.-S. Paik et al., "Multilayer piezoelectric linear ultrasonic motor for camera module", "Journal of electroceramics" vol. 22, no. 1-3,pp. 346-351,2009.
    [79] K.-J. Lim, J.-S. Lee, S.-H. Kang, "The design and characteristics of ring type linear ultrasonic motor for XY stage", "Journal of electroceramics" vol. 17, no. 2-4,pp. 557-560,2006.
    [80] H. W. Z. Jiantao, Z. Hua and Z. Chunsheng, "New Scale Technologies", "US" vol. 23-25, no.,pp. 270-273,2012.
    [81] J. Wang, W. Chen, Piezoelectricity, Acoustic Waves and Device Applications: Proceedings of the 2006 Symposium, Zhejiang University, China, 14-16, December 2006. (World Scientific, 2007).
    [82] J. Jin, D. Wan, Y. Yang, Q. Li, M. Zha, "A linear ultrasonic motor using (K0. 5Na0. 5) NbO3 based lead-free piezoelectric ceramics", "Sensors and Actuators A: Physical" vol. 165, no. 2,pp. 410-414,2011.

    下載圖示 校內:2025-08-26公開
    校外:2025-08-26公開
    QR CODE