| 研究生: |
許耀宗 Hsu, Yao-Tsung |
|---|---|
| 論文名稱: |
應用於家庭機器人追蹤人體與避障路徑規劃之全向移動系統設計和實作 Design and Implementation of Human Tracking, Obstacle Avoidance and Path Planning for Omnidirectional Mobile System of Home Robot |
| 指導教授: |
王駿發
Wang, Jhing-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 家庭機器人 、全向移動系統 、使用者追蹤 、平移避障 |
| 外文關鍵詞: | Home Robot, Omnidirectional Mobile System, User Tracking, Obstacle Avoidance |
| 相關次數: | 點閱:93 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文實現了ㄧ個應用於家庭機器人跟隨使用者、前往使用者身邊及行進間避障的全向移動系統。此移動系統可獨立分離或結合於家庭機器人本體,在分離狀態時,移動系統可獨立遙控控制,或切換使其自動前進並於行進間避障。在結合狀態時,移動系統可牽引總量達30公斤以上的家庭機器人進行移動,除此之外,還能使用深度攝影機Kinect透過藍芽所傳遞的使用者位置資訊和手勢辨識結果,跟隨使用者或前往使用者身邊。其中手勢辨識的加入更能讓機器人在語音辨識失效時(例如:吵雜環境中),以影像接收來自使用者的訊息,即刻前往使用者的身邊服務,提升追蹤功能在實際場域的可用性。
本移動系統使用擅於執行特定任務的單晶片控制,卻能夠透過延遲分時收訊的設計,在沒有中斷處理的機制下,使用藍牙與RF 2.4G無線傳輸技術於四個子系統間快速的切換控制權,跳脫以往單晶片控制的限制而有了類多工執行不同任務的能力。另一方面,動力子系統所使用的全向輪,則能幫助機器人完成傳統兩輪機器人不容易進行的平移和自旋運動模式。其中,平移能讓行進間的避障更靈活快速,自旋則能讓機器人在使用者大角度的迴轉時更快速的鎖定目標,讓目標始終位於Kinect的視線範圍內。最後,本論文以模擬的居家環境進行障礙物避障、跟隨使用者與前往使用者等多項實驗來驗證移動系統的設計實作,並在居家環境條件下都能擁有很好的表現。
The paper implements an omnidirectional mobile system that applies to home robots with functions including follow the user, come to the user and path obstacle avoidance. The mobile system can be independently separated or combined with the home robot. In the separation state, the independent mobile system can be remotely control, or switch to make it automatically go forward and avoid obstacles in the path. In the combined state, the mobile system can remotely pull the home robot which weight more than 30 kilograms. In addition, the mobile system can follow or come to the user through the user position information and the results of gesture recognition via Bluetooth from the depth camera Kinect. The gesture recognition allows the robot to receive the message from the user even when speech recognition fails (for example, noisy environment), which improves the usability of user tracking function in actual field. The mobile system uses single-chip control that is specializes in executing specific tasks, while with the delay time sharing reception design, four subsystems can quickly switch their control using Bluetooth and RF 2.4G wireless transmission, therefore achieve a certain degree of multitasking ability. On the other hand, the omnidirectional wheel used by the power subsystem can help the robot to do translation and spin movement that is difficult for the traditional two-wheeled robot.
Among them, the translation movement allow the robot to avoid obstacle in the path faster and more flexible, while the spin movement allow the robot to lock user with large angle rotation when user is turning around in a short time, so that the target can always be located within the sight of Kinect camera. Finally, the paper design various experiments in the simulated home environment to verify the mobile system design, including path obstacle avoidance, follow the user and come to the user, and the results show that the mobile system have good performance in home environmental conditions.
[1] 黃聖富,全向移動自主性跟隨機器人之設計與實現,電機工程所,國立勤益科技大學,2010。
[2] J.Fritsch,M.Kleinehagenbrock,S.Lang,G.A.Fink,and G. Sagerer, “Audiovisual person tracking with a mobile robot,” in Proc.Int.Conf.on Intellgent Autonomous Systems, pp.898-906,2004.
[3] J.M.Martinez-Otzeta, A. Ibaguren, A.Ansutegi, C.Tubio, and J.Aristondo, “People following behavior in an industrial environment using laser and stereo camera,” in Proceedings of the 23rd international conference on Industrial engineering and other applications of applied intelligent systems,pp. 508-517,2010.
[4] H.Takemura, K. Ito, and H.Mizoguchi, “Person Following Mobile Robot under Varing Illumination Based on Distance and Color information,” Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, pp.1500-1505, 2007.
[5] H.J.Kim, H.S.Yoon, and J.H.Kim, “User recognition based on continuous monitoring and tracking,” 2011 6th ACM/IEEE international Conference on Human-Robot Interaction, pp.163-164,2011.
[6] P.Ratsamee, Y.Mae , K.Ohara, T.Takubo, and T.Arai, “People tracking with body pose estimation for human path prediction,” In Proceedings of 2012 IEEE International Conference on Mechatronics and Automation,pp.1915-1920,2012.
[7] Y.Sung, and W.Chung, “Human tracking of a mobile robot with an onboard LRF using human walking motion analysis,” 8th Internaional Conference on Ubiquitious Robots and Ambient Intelligence, pp.366-370,2011.
[8] X.Ma, C.Hu,X.Dai, and K.Qian, “Sensor integration for person tracking and following with mobile robot.” In IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center, pp.3254-3259, 2008.
[9] T.Germa, F.Lerasle, N.Quadah, V.Cadenat, “Vision and RFID data fusion for tracking people in crowds by a mobile robot,” Computer Vision and Image Understanding, pp.641-651,2010.
[10] G. Xing, S. Tian, H. Sun, W. Liu and H. Liu, "People-following system design for mobile robots using kinect sensor," 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, 2013, pp. 3190-3194.
[11] S. Jia, L. Wang, S. Wang, and C. Bai, "Fuzzy-based intelligent control strategy for a person following robot," in Proc. IEEE Int. Conf. ROBIO, 2013, pp. 2408-2413.
[12] H. Kwon, Y. Yoon, J.B. Park and A.C. Kak, “Person Tracking with a Mobile Robot
using Two Uncalibrated Independently Moving Cameras”, IEEE International Conference on Robotics andAutomation, Barcelona , pp. 2877 - 2883, 2005
[13] T. Yoshimi, M. Nishiyama, T. Sonoura, H. Nakamoto, S. Tokura, H. Sato, F.Ozaki,
N. Matsuhira and H. Mizoguchi, “Development of a Person Following Robot with Vision Based Target Detection”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp. 5286 - 5291, 2006.
[14] N. Hirai, H. Mizoguchi, “Visual Tracking of Human Back and Shoulder for Person
Following Robot”, The Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, pp. 527-532, 2003
[15] C. Y. Tsai and K. T. Song, “Face Tracking Interaction Control of a Nonholonomic
Mobile Robot”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp. 3319 - 3324, 2006
[16]何昭慶,影像伺服控制與三維追蹤之研究,國立台灣科技大學電機工程系,博士論文,2008
[17] Li T.-H.S, Shih-Jie Chang and Wei Tong, “Fuzzy Target Tracking Control of Autonomous Mobile Robots by Using Infrared Sensors”, IEEE Transactions on Fuzzy System, Vol.12, No.4, 2004
[18] 林哲瑋,基於即時影像之模糊追隨控制,國立台北科技大學自動化科技研究
所,碩士論文,2007
[19] 何育昕,自動導航車之模糊追隨控制,國立台北科技大學電機工程系所,碩
士論文,2005
[20] M. Chueh, Au Yeung, Y .L.W, Lei K.-P.C and Joshi S.S, “Following Controller for
Autonomous Mobile Robots Using Behavioral Cues”, IEEE Transactions on Industrial Electronics, Vol.55, No.8, 2008
[21] Y. Nagumo, A. Ohya, “Human Following Behavior of an Autonomous Mobile Robot Using Light-Emitting Device”, IEEE International Workshop on Robot and Human Interactive Communication, pp.225-230, 2001
[22] M. Kobilarov, G. Sukhatme, J. Hyams and P. Batavia, “People Tracking and Following with Mobile Robot Using an Omnidirectional Camera and a Laser”, IEEE International Conference on Robotics and Automation, pp. 557-562, 2006
[23] 賴一翔,具搜尋與避障之自動跟隨機器人,國立中央大學電機工程學系,碩
士論文,2009
[24] 傅培耕,即時物體追蹤之立體視覺導引自走車,國立中原大學機械工程學系,碩士論文,2004
[25] Manabu Shimizu, Kazuyuki Kobayashi, Kajiro Watanabe, “Clothoidal Curve-based Path Generation for an Autonomous Mobile Robot,” Proceedings of IEEE SICE-ICASE, pp. 478-481, Oct. 2006.
[26] 薛伯彥,移動式機器人即時影像目標物追蹤與避障系統之設計與實現,國立成功大學電機工程研究所,碩士論文,2008
[27] 鄭竣瑋,使用 Kinect 感測器之全向式機器人定位與避障路徑規劃,國立中興大學機械工程研究所,碩士論文,2013
[28] 謝人中,智慧型醫院服務機器人設計與實現,碩士論文,南台科技大學電機工程系,2004
[29] A.Ohya and T.Ohno, “Obstacle detectability of ultrasonic ranging system and sonar map understanding,” Robotics and Automomous Systems, vol. 18, pp.251-257,1996.
[30] 宋開泰,基於代理人系統之機器人互動控制系統研發(I),2004
[31] A. Filipescu, I. Susnea, V.Minzu1, S. Filipescu, “Fuzzy Control and Bubble Rebound Obstacle Avoidance of a Mobile Platfor Used as Robotic Assistant,” The 29th Chinese Control Conference, pp.3654-3659, July. 2010
[32] Shigang Cui, Xiong Su, Li Zhao, Zhigang Bing and Genghuang Yang, "Study on ultrasonic obstacle avoidance of mobile robot based on fuzzy controller," 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, 2010, pp. V4-233-V4-237.
[33] G. Liu, M. Yao, L. Zhang and C. Zhang, "Fuzzy Controller for Obstacle Avoidance in Electric Wheelchair with Ultrasonic Sensors," 2011 International Symposium on Computer Science and Society, Kota Kinabalu, 2011, pp. 71-74.
[34] Zedeh,L.A., “Fuzzy Sets” , Inform. Control, Vol.8,pp338-353,1965.
[35] Lee, C. C., “Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Part I and Part II”, IEEE Transactions on Systems, Man and Cybernetics, March-April 1990.
[36] Mamdani,E.H “ ,An Experiment in Linguistic Synthesis with a Fuzzy Logic Control, “Int.Journalof Human-Computer Studies,Vol.51,pp135-147, August 1999.
[37]Mendel, J.M., “Fuzzy Logic Systems for Engineering: A Tutorial”, Proceedings of the IEEE, Vol.83, No.3, March 1995.
[38] J. X. Xu, Z. Q. Guo and T. H. Lee, "Design and Implementation of a Takagi–Sugeno-Type Fuzzy Logic Controller on a Two-Wheeled Mobile Robot," in IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5717-5728, Dec. 2013.
[39] Q. Ren, Q. Zhao, H. Qi and L. Li, "Real-time target tracking system for person-following robot," 2016 35th Chinese Control Conference (CCC), Chengdu, 2016, pp. 6160-6165.
[40] http://resource.innovati.com.tw/ 利基應用科技
[41] https://zenbo.asus.com/tw/product/specifications/ 華碩Zenbo
[42] E. Babaians, N. Khazaee Korghond, A. Ahmadi, M. Karimi and S. S. Ghidary, "Skeleton and visual tracking fusion for human following task of service robots," 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, 2015, pp. 761-766.
[43] A. Al-Wazzan, R. Al-Farhan, F. Al-Ali and M. El-Abd, "Tour-guide robot," 2016 International Conference on Industrial Informatics and Computer Systems (CIICS), Sharjah, 2016, pp. 1-5.
[44] Ping Ding and Yan Song, "Robust object tracking using color and depth images with a depth based occlusion handling and recovery," 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015, pp. 930-935.
[45] S. Sun, N. An, X. Zhao and M. Tan, "Human recognition for following robots with a Kinect sensor," 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, 2016, pp. 1331-1336.
[46] R. Tubman and K. M. Arif, "Efficient people search and gesture recognition using a Kinect interfaced mobile robot," 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC), Auckland, 2016, pp. 220-226.
[47] J. Du, P. Zheng, Z. Xie, Y. Yang, H. Chu and G. Yu, "Research on path planning algorithm based on security patrol robot," 2016 IEEE International Conference on Mechatronics and Automation, Harbin, 2016, pp. 1030-1035.