簡易檢索 / 詳目顯示

研究生: 楊志華
Yang, Chi-hua
論文名稱: 利用邊界元素法分析異向性岩石邊坡之裂縫行為研究
Fracture Mechanics Analysis on Anisotropic Rock Slope Using the BEM
指導教授: 陳昭旭
Chen, Chao-shi
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 裂縫傳播路徑異向性岩石應力強度因子邊界元素法
外文關鍵詞: Stress intensity factor, crack propagation, anisotropic rocks, boundary element method
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對含有裂縫之異向性岩石邊坡,分析裂縫在不同長度與位置下之應力強度因子及裂縫傳播路徑。利用異向性線彈性理論配合材料基本解、邊界積分方程式及最大張應力準則為理論基礎,藉以Fortran語言撰寫成邊界元素法分析程式,以分析等向性及異向性材料之裂縫尖端應力強度因子與裂縫傳播路徑等相關問題。為檢驗數值分析結果之可靠度,並與歷代相關文獻進行驗證,其分析結果與之相比較發現非常吻合,可成功地求得混合模態載重下裂縫尖端之應力強度因子與裂縫傳播路徑。因此本研究利用此分析程式模擬含有裂縫之異向性岩石邊坡,可依據裂縫與模型的幾何形狀模擬出可能發生破壞的滑動面,來探討裂縫在受到混合模態載重以及材料在不同異向性程度影響下之應力強度因子與傳播路徑。

    In this study, a formulation of the BEM, based on the relative displacements at the crack tip, is used to determine the mixed mode SIFs of isotropic and anisotropic rocks. The BEM formulation is such that the displacement integral equation is only collocated on outside boundary and the traction integral equation is only collocated on one side of the crack surface. A decoupling technique can be used to determine at the mixed mode SIFs of isotropic and anisotropic rocks based on the relative displacements at the crack tip. Numerical examples for the determination of the mixed mode SIFs for anisotropic rocks with different crack inclination angel, crack length, and degree of material anisotropy are presented. In this study presents a fracture propagation analysis for simulation the process of slope failure. The development of the simulating failure surface is subject to the fracture propagation and stress intensity factor under mixed mode constraints.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論1 1-1 研究動機1 1-2 研究目的與內容2 1-3 研究流程3 第二章 文獻回顧5 2-1 破壞力學發展5 2-2 等向性材料裂縫應力強度因子9 2-3 異向性材料裂縫應力強度因子21 2-4 裂縫傳播路徑27 第三章 理論模式29 3-1 異向性線彈性理論29 3-2 邊界積分方程式35 3-3 應力強度因子38 3-4 裂縫之開裂與傳播40 3-4-1 裂縫初始開裂方向40 3-4-2 裂縫傳播路徑42 第四章 程式介紹與數值驗證44 4-1 分析程式介紹44 4-2 裂縫元素之敏感度分析47 4-3 等向性材料之數值驗證50 4-4 異向性材料之數值驗證56 4-5 裂縫初始開裂角與裂縫傳播之驗證60 4-6 小結 71 第五章 異向性岩石邊坡裂縫傳播72 5-1 邊坡概況72 5-2 等向性岩石邊坡73 5-2-1 等向性岩石邊坡之應力強度因子73 5-2-2 等向性岩石邊坡之裂縫傳播路徑78 5-3 異向性岩石邊坡82 5-3-1 異向性岩石邊坡之應力強度因子82 5-3-2 異向性岩石邊坡之裂縫傳播路徑91 第六章結論與建議98 6-1 結論 98 6-2 建議 99 參考文獻 100 自述 107

    1. Al-Shayea, N. A., Crack propagation trajectories for rocks under mixed mode I-II fracture., Engineering Geology., Vol 81, pp. 84-97,(2005).
    2. Amadei, B., Rock anisotropy and the theory of stress measurements, Springer-Verlag, New York, (1983).
    3. Ayatollahi, M.R., On determination of mode II fracture toughness using semi-circular bend specimen., International Journal of Solids and Structures., Vol 43, pp.5217-5227,(2006).
    4. Azhdari, A., Obata, M., Sia, N. S., Alternative solution methods for crack problems in plane anisotropic elasticity, with examples., International Journal of Solids and Structures.,Vol. 26., pp.6433-6478, (2000).
    5. Binienda, W., Wang, A. S. D. and Delale, F., Analysis of bent crack in unidirectional fibre reinforced composites. Int. J. Fracture, Vol. 47, pp. 1-24, (1991).
    6. Blandford, TWO-DIMENSIONAL STRESS INTENSITY FACTOR COMPUTATIONS USING THE BOUNDARY ELEMENT METHOD., International Journal for Numerical Methods in Engineering., Vol 17., pp 387-404,(1981).
    7. Boone, T. J., Wawrzynek, P. A., Finite element modelling of fracture propagation in orthotropic materials., Engineering Fracture Mechanics,Vol 26.,pp.185-201, (1987).
    8. Bouchard, P.O., Crack propagation modelling using an advanced remeshing technique., Computer Methods in Applied Mechanics and Engineering., Vol 189, pp. 723-742,(2000).
    9. Cerrolaza, M. and Alarcon, E., A bi-cubic transformation for the numerical evaluation of the Cauchy principal value integrals in boundary methods. Int. J. Numer. Methods Engng., Vol. 28, pp. 987-999, (1989).
    10. Chen, C. S., Pan, E., and Amadei, B., Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 35, No. 2, pp. 195-218, (1996).
    11. Chen, K. L. and Atluri, S. N., A finite-difference alternating method for a cost-effective determination of weight-functions for orthotropic materials in mixed-mode fracture. Engineering Fracture Mechanics, Vol. 36 , pp. 327-340, (1990).
    12. Chen, Y. Z., Multiple crack problems of anti-plane elasticity in an infinite body. Engineering Fracture Mechanics, Vol. 20, No.5 6, pp. 767-775, (1984).
    13. Du, Y. and Aydin, A. Interaction of multiple cracks and formation of echelon crack arrays. Int. J. Numerical and Analytical Methods in Geomechanics, Vol. 15, pp. 205-218, (1991).
    14. Dwyer, J. F., and Amadei, B., The edge function method and singular problems in rock mechanics. Int. J. Rock Mech. Sci. Geomech. Abstr, Vol. 32, No.2, pp. 121-133, (1995).
    15. Dwyer, J.F., Edge function analysis of crack interaction in anisotropic materials. Engineering Fracture Mechanics, Vol. 56, No.2, pp. 233-248, (1997).
    16. Erdogan, F. Shi, G.C., On the crack extension in plates under loading and transverse shear. Journal of Basic Engineering., Vol 85., pp. 519-527,(1963).
    17. Fujimoto, T. and Sumi, S., Local buckling of thin tensioned plate with a crack. Memoirs of the Fraculty of Engineering, Kyushu University, Vol.42, (1982).
    18. Gandhi, K. R., ANALYSIS OF AN INCLINED CRACK CENTRALLY PLACED IN AN ORTHOTROPIC RECTANGULAR PLATE., Journal of Strain Analysis, Vol 7, pp.157-162,(1972).
    19. Griffith, A. A., The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London, Series A, Vol. 221, pp. 163-198, (1920).
    20. Gross, B., Srawley, J. E., Stress – intensity factors for a single–edge–notch tension specimen by boundary collocation of a stress function., NASA, Tcehnical Note., D-2395,(1964).
    21. Hai-Tao, C., A periodic array of cracks in an infinite anisotropic medium. Engineering Fracture Mechanics, Vol. 46, No.2, pp. 133-142, (1993).
    22. Hasebe, N., Inohara, S., Stress analysis of a semi-infinite plate with an oblique edge crack., Ing. Arch., Vol 49, pp.51-62,(1980).
    23. Irwin, G. R., Analysis of stresses and strains near the end of a crack. Trans. ASME, J. Appl. Mech., Vol. 24, pp. 361-364, (1957).
    24. Isida, M., Arbitrary loading problems of doubly symmetric regions containing a central crack. Engineering Fracture Mechanics, Vol. 7, pp. 505-514, (1975).
    25. Isida, M., Tension of a half plane containing array cracks, Branched cracks and cracks emanating from sharp notches., Trans.Japan Soc. Mech. Engrs., Vol 45, pp.306-317.(1979).
    26. Lekhnitskii, S.G., Theory of elasticity of an anisotropic elastic body. translated by P. Fern, Holden-Day Inc, San Francisco, (1963).
    27. Liu, D. S., Chiou, D. Y., A coupled IEM/FEM approach for solving elastic problems with multiple cracks., International Journal of Solids and Structures., Vol 40., pp.1973-1993, (2003).
    28. Mauge, C. and Kachanov, M., Anisotropic material with interacting arbitrarily oriented cracks. Stress intensity factors and crack-microcrack interactions. Int. J. Fracture, Vol. 65, pp. 115-139, (1994).
    29. Murakami, Y., A simple procedure for the accurate determination of stress intensity factors by finite element method. Engineering Fracture Mechanics, Vol. 8, pp. 643-655, (1976)..
    30. Palaniswamy, K., Knauss, W. G., Propagation of a crack under general, in-plane tension., International Journal of Fracture 8(B7)., pp.114-117,(1972).
    31. Pan, E. and Amadei, B., Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary element method. Int. J. Fracture, Vol. 77, pp.161-174, (1996).
    32. Pan, E., A general boundary element analysis of 2-D linear elastic fracture mechanics. Int. J. Fracture, Vol. 88, pp.41-59, (1997).
    33. Portela, A., Aliabadi, M. H., Rooke, D. P., Dual boundary element incremental analysis of crack propagation., Computer & Structures., Vol 46., pp.237-247,(1993).
    34. Rao, Q., Sun, Z., Stephansson, O., Li, C., Stillborg, B., Shear fracture (mode II) of brittle rock., International Journal of Rock Mechanics and Mining Sciences., Vol 40, pp.355-375,(2003).
    35. Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans. ASME, J. Appl. Mech. Vol. 35, pp. 379-386, (1968).
    36. Richard, H. A., EXAMINATION OF BRITTLE FRACTURE CRITERIA FOR OVERLAPPING MODE I AND MODE II LOADING APPLIED TO CRACKS., In Application of Fracture Mechanics to Materials and Structures, G.C. Sih et al.(eds.), Martinus Nijhoff Publication, pp. 309-316,(1984).
    37. Rooke, D. P. and Tweed, J., The stress intensity factors of a radial crack in a point loaded disc. Int. J. Engng. Sci., Vol. 11, pp. 285-290, (1973).
    38. Scavia, C., Fracture mechanics approach to stability analysis of rock slope., Engineering Fracture Mechanics,Vol. 35., No.4/5, pp.889-910, (1990).
    39. Scavia, C., Method for the study of crack propagation in rock structures., Geotechnique., Vol 45., pp.447-463,(1995).
    40. Schijve, J., Some calculations on the stress distribution in an infinite sheet with a single crack and with periodic collinear cracks. Engineering Fracture Mechanics, Vol. 55, No. 2, pp. 313-320, (1996).
    41. Shen, B., Stephansson, O., Modification of the G-criterion for crack propagation subjected to compression., Engineering Fracture Mechanics.,Vol 47., pp.177-189, (1994).
    42. Shu, H.M., Petit, J. and Bezine, G., Stress intensity factors for radial cracks in thick walled cylinders. I. Symmetrical cracks II. Combination of autofrettage and internal pressure. Engineering Fracture Mechanics, Vol. 49, No. 4, pp. 611-629, (1994).
    43. Si, R. K. L., Sun, H. Y., Numerical solutions of two-dimensional anisotropic crack problems., International Journal of Solids and Structures., Vol 40, pp.4615-4635,(2003).
    44. Sih, G. C., Paris, P. C. and Irwin, G. R., On cracks in rectilinearly anisotropic bodies. Int. J. Fracture, Vol. 3, pp. 189-203, (1965).
    45. Sih, G. C., Strain energy density factor applied to mixed mode crack problems., International Journal of Fracture 10(B7), pp.305-321,(1974).
    46. Snyder, M. D., Cruse, T. A., BOUNDARY-INTEGRAL EQUATION ANALYSIS OF CRACKED ANISOTROPIC PLATES., International Journal of Fracture., Vol 11., pp.315-328,(1975).
    47. Sollero, P. and Aliabadi, M. H., Fracture mechanics analysis of anisotropic plates by the boundary element method. Int. J. Fracture, Vol. 64, pp. 269-284, (1993).
    48. Sollero, P., Aliabadi, M. H., Anisotropic analysis of cracks emanating from circular holes in composite laminates using the boundary element method., Engineering Fracture Mechanics,Vol 49.,pp.213-224, (1994).
    49. Sollero, P., Aliabadi, M.H., Dual boundary element analysis of anisotropic crack problems., Boundary Elements XVII, pp. 267,(1995).
    50. Tada, H., Paris, P. C., Irwin, G. R., The stress analysis of cracks handbook,2nd edition, Paris Productions Incorported, Missouri.(1985)
    51. Tsang, D. K. L., Oyadiji, S. O. and Leung, A. Y. T., Multiple penny-shaped cracks interaction in a finite body and their effect on stress intensity factor. Engineering Fracture Mechanics, Vol. 70, pp. 2199-2214, (2003).
    52. Vallejo, L. E., INFLUENCE OF FISSURES IN A STIFF CLAY SUBJECTED TO DIRECT SHEAR., Geotechnique., Vol 37, pp.69-82,(1987).
    53. Wawrzynek, P. A., Martha, L. F., Ingraffea, A. R., Computational environment for the simulation of fracture processes in three dimensions. American Society of Mechanical Engineers., Vol 91., pp.321-327,(1988).
    54. Wei, K., De Bremaecker, J. C., Fracture growth under compression., Journal of Geophysical Research., Vol 99., pp. 13,781-13,790.(1994).
    55. Whittaker, B. N., Singh, R. N. and Sun, G., Rock Fracture Mechanics :Principles, Design and Applications, Elsevier, New York, (1992).
    56. Woo, C. W., Ling, L. H., ON ANGLED CRACK INITIATION UNDER BIAXIAL LOADING., Journal of Strain Analysis for Engineering Design., Vol 19, pp.51-59,(1984).
    57. Yokobori, T., Ohashi, M. and Ichikawa, M., The Interaction of Two Collinear Asymmetrical Elastic Cracks, Reports of the Research Institute for Strength and Fracture of Materials, Tohoku University, Vol. 1., No.2, pp.33-39, (1965).
    58. Zarzour, J., On interacting cracks in unidirectional fibrous composites. Int. J. of Solids and Structures, Vol. 29, pp.3239-3250, (1992).
    59. 王建力,岩石破壞力學講義,國立成功大學資源工程學系,(2000)。
    60. 巫佳瑾,異向性多裂縫岩體之破壞力學性質分析,國立成功大學資源工程學系碩士論文,(2006)。
    61. 柯建仲,利用邊界元素法探討異向性岩石之裂縫傳播路徑,國立成功大學資源工程學系博士論文,(2007)。
    62. 柯建仲,異向性大理岩之破壞力學性質分析,國立成功大學資源工程學系碩士論文,(2000)。
    63. 彭文彬,二維異向性裂紋交互作用之探討,國立成功大學土木工程學系碩士論文,(2000)。

    下載圖示 校內:2008-08-06公開
    校外:2008-08-06公開
    QR CODE