簡易檢索 / 詳目顯示

研究生: 張繼安
Chang, Chi-An
論文名稱: 電動車用非接觸式三相感應充電槳系統之研製
Design and Implementation of Three-Phase Contactless Inductive Charging Paddle System for Electric Vehicles
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 三相非接觸感應充電槳電動車
外文關鍵詞: three-phase contactless, charging paddle, electric vehicles
相關次數: 點閱:97下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究三相非接觸式感應電能傳輸技術,並設計出符合SAE J-1773感應充電規範之三相感應充電槳系統。文中首先運用有限元素分析法磁場模擬軟體Maxwell針對不同感應耦合結構作分析與模擬,進而提出三相耦合線圈共構於同一鐵芯結構型式之Y型三相感應耦合結構,並將其導入三相感應充電槳系統。為了提昇感應電能傳輸效率,本文分析並採用諧振電路架構,並計算相關參數。在初級側控制機制上,藉由單晶片控制電路與諧振電壓感測電路達成諧振頻率追蹤機制,最後透過實驗與模擬驗證系統可行性,實驗結果耦合結構在氣隙10mm時,系統最佳的感應電能傳輸效率可達81%。

    The purpose of this thesis is to study on three-phase contactless inductive power transfer technology and design the three-phase inductive charging paddle system which is suitable for SAE J-1773. At first, finite element method software Maxwell is used to analyze and simulate the magnetic field of different inductive coupled structure. And then, the Y-type three-phase inductive coupled structure which has three-phase coil wound on a same core structure is used to made three-phase inductive charging paddle system. In order to improve efficiency of inductive charging paddle system, resonant compensation circuits are analyzed and applied. The circuits of primary utilize microcontroller and resonant voltage sensing circuit to track resonant frequency of system. Finally, the three-phase contactless inductive charging paddle system is verified through simulation and experimental. When air gap of inductive coupled structure is 10mm, The highest power transmission efficiency of contactless power transmission system is 81%

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 1 1-3 研究方法 8 1-4 論文大綱 8 第二章 非接觸感應耦合原理 10 2-1 前言 10 2-2 感應電能傳輸工作原理 10 2-3 感應線圈基本原理 11 2-4 磁性材料 12 2-5 感應線圈之非理想特性 14 2-5-1 集膚效應 15 2-5-2 近接效應 15 2-6 變壓器等效模型 15 2-6-1 鬆耦合變壓器 16 2-6-2 互感與耦合係數量測 17 2-7 SAE J-1773規範之感應充電槳磁場模擬 18 2-8 三相非接觸式感應電能傳輸技術與應用 19 2-8-1 三相非接觸式感應電能傳輸技術 19 2-8-2 電動車用三相感應充電槳與充電插槽 20 2-9 電池基本特性與充電策略 23 2-9-1 二次電池種類 23 2-9-2 電池充電策略 24 第三章 三相非接觸感應充電槳研製 27 3-1 前言 27 3-2 整體系統架構簡述 27 3-3 三相感應耦合結構分析 28 3-3-1 磁路 28 3-3-2 EE型三相感應耦合結構磁場模擬 29 3-4 具正三角形鐵芯柱排列之三相感應耦合結構分析 34 3-4-1 三相感應充電槳 34 3-4-2 Delta型三相感應耦合結構 35 3-4-3 Y型三相感應耦合結構 39 3-4-4 三相感應耦合評比 43 3-5 諧振電路設計 43 3-5-1 諧振電路架構分析 43 3-5-2 三相諧振電路分析 47 第四章 三相感應充電槳系統硬體電路 51 4-1 前言 51 4-2 系統電路架構 51 4-3 初級側電路 52 4-3-1 三相諧振變流器 52 4-3-2 PIC單晶片控制電路 53 4-3-3 諧振頻率追蹤機制 54 4-3-4 諧振電壓電測電路 56 4-4 Y型三相感應耦合結構繞製與參數量測 57 4-4-1 Y型三相感應耦合結構實體圖與規格圖 57 4-4-2 Y型三相感應耦合結構參數量測與分析 60 4-5 次級側電路 63 4-5-1 三相橋式整流濾波電路 63 4-5-2 電池充電電路 63 4-6 電動車用三相非接觸式感應充電系統設計流程 65 第五章 系統模擬與實驗結果 68 5-1 前言 68 5-2 系統規格與硬體電路 68 5-3 IsSpice電路模擬 69 5-4 系統實驗結果與波形量測 72 5-5 耦合結構量測結果與分析 75 第六章 結論與未來研究方向 79 6-1 結論 79 6-2 未來研究方向 80 參考文獻 81

    [1] “SAE electric vehicle inductive charge coupling recommended practice,” SAE J-1773, Society of Automotive Engineers, Draft Document, 1995-01.
    [2] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl., vol. 35, pp. 884-895, 1999.
    [3] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, vo1. 2, pp. 841-847.
    [4] Y. Koike, M. Kaneko, T. Hyogo, and H. Shojima, “Electromagnetic induction type charging device,” U.S. Patent 6,239,577, 2001.
    [5] G. R. Woody, H. J. Tanzer, and J. T. Hall, “Fixed core inductive charger,” U.S. Patent 5,434,493, 1995.
    [6] K. Watanabe, H. Kuki, D. Arisaka, and T. Shimada, “Charging connector for electric vehicle,” U.S. Patent 5,909,100, 1999.
    [7] K. Watanabe, H. Kuki, S. Arisaka, and T. Shmiada, “Magnetic coupling device for charging an electric vehicle,” U.S. Patent 5,917,307, 1999.
    [8] Y. Koike, K. D. Conroy, and P. T. Nguyen, “Charger coupling,” U.S. Patent 6,373,221, 2002.
    [9] C. H. Hu, C.M. Chen, Y. S. Shiao, T. J. Chan, and T. R. Chen, “Development of a universal contactless charger for handheld devices,” in Proc. IEEE Int. Symposium Industrial Electronics, 2008, pp. 99-104.
    [10] K. C. Wang, C. W. Hsu, T. J. Chan, T. S. Chien, and T. R. Chen, “Study of applying contactless power transmission system to battery charge,” in Proc. IEEE Int. Conf. Power Electronics and Drive System, 2009, pp. 257-262.
    [11] T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE Int. Conf. Consumer Electronics, 2011, pp. 11-12.
    [12] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, “An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy,” in Proc. IEEE Int. Conf. Engineering in Medicine and Biology Society, 2010, pp. 6531-6534.
    [13] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. 5th IEEE Int. Conf. Nano/Micro Engineered and Molecular System, 2010, pp. 604-607.
    [14] T. Imura, H. Okabe, and Y. Hori, “Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings,” in Proc. IEEE Conf. Vehicle Power and Propulsion, 2009, pp. 936- 940.
    [15] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. Int. Conf. Power Electronics, 2010, pp. 2931-2934.
    [16] U. K. Madawala, D. J. Thrimawithana, and Nihal Kularatna, “An ICPT-supercapacitor hybrid system for surge-free power transfer,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3287-3297, 2007.
    [17] X. Zhang, Q. Yang, H. Chen, Y. Li, and Z. Yan, “The application of non-contact power transmission technology (NPT) in the modern transport system,” in Proc. Int. Conf. Mechatronics and Autom., 2010, pp. 345-349.
    [18] P. Sergeant and A. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no.1 pp.1-7, 2008.
    [19] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental result on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
    [20] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. 2nd IEEE Conf. Industrial Electronics and Applications, 2007, pp.68-73.
    [21] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
    [22] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [23] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. Int. Conf. Power System Technology, 2000, vol. 1, pp. 79-84.
    [24] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicles,” in Proc. Int. Conf. Power Electronics, 2010, pp. 807-813.
    [25] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, “A three-phase inductive power transfer system for roadway-powered vehicles,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3370-3378, Dec. 2007.
    [26] G. A. Covic, and J. T. Boys, “Magnetic design of a three-phase inductive power transfer system for roadway powered electric vehicles
    ,” in Proc. IEEE Conf. Vehicle Power and Propulsion, 2010, pp. 1-6.
    [27] C. L. W. Sonntag, E. A. Lomonova, J. L. Duarte and A. J. A. Vandenput, “Specialized receiver for three-phase contactless energy transfer desktop applications,” in Proc. European Conf. Power Electronics and Applications, 2007, pp. 1-11.
    [28] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for three-phase contactless power transfer system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2676–2687, Sep. 2011.
    [29] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of Characteristics on Planar Contactless Power Transfer Systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2676–2687, Jun. 2012.
    [30] D. J. Thrimawithana and U. K. Madawala, “A three-phase bi-directional IPT system for contactless charging of electric vehicles,” in Proc. IEEE Int. Conf. Industrial Technology, 2010, pp. 1957-1962.
    [31] M. L. G. Kissin, J. T. Boys, and G. A. Covic, “Inter-phase mutual inductance in polyphase inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2393-2400, July 2009.
    [32] D. J. Thrimawithana, U. K. Madawala, A. Francis, and M. Neath, “Magnetic modeling of a high-power three phase bi-directional IPT system,” in Proc. IEEE IECON, 2011, pp. 1414-1419.
    [33] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1247, 2001.
    [34] T. H. Nishimura, T. Eguchi, K. Hirachi, Y. Maejima, K. Kuwana and M. Saito, “A large air gap flat transformer for a transcutaneous energy transmission system,” in Proc. IEEE PESC, 1994, vol. 2, pp. 1323-1329.
    [35] J. Y. Lee, H. Y. Shen, and T. L. Wan, “Contactless inductive charging system with hysteresis loop control for small-sized household electrical appliances,” in Proc. IEEE APEC, 2012, U.S.A., pp. 2172-2178.
    [36] F. Zhuo, X. Shen, Y. Qiu, L. Wu, and Z. Wang, “Study of detachable transformer using FEM on contactless power transmission system,” in Proc. IEEE PESC, 2008, pp. 4333-4336.
    [37] X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC‚ 2008, pp. 645-650.
    [38] 李嘉猷、張繼安、沈紘宇,“最佳化非接觸式三相感應饋電界面之研製,” 中華民國第三十二屆電力工程研討會論文集,2011年,1371-1375頁。
    [39] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
    [40] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
    [41] 李世華,電動載具用導軌型非接觸式感應饋電軌道之研製,國立成功大學電機工程學系碩士論文,2011年。
    [42] 李昆蔚,電動載具用編織型非接觸式感應充電平台之研製,國立成功大學電機工程學系碩士論文,2011年。

    下載圖示 校內:2015-08-20公開
    校外:2015-08-20公開
    QR CODE